Question

Coulomb's law for the magnitude of the force FF between two particles with charges QQ and...

Coulomb's law for the magnitude of the force FF between two particles with charges QQ and Q′Q′ separated by a distance dd is

|F|=K|QQ′|d2|F|=K|QQ′|d2,

where K=14πϵ0K=14πϵ0, and ϵ0=8.854×10−12C2/(N⋅m2)ϵ0=8.854×10−12C2/(N⋅m2) is the permittivity of free space.

Consider two point charges located on the x axis: one charge, q1q1 = -13.0 nCnC , is located at x1x1 = -1.670 mm ; the second charge, q2q2 = 39.0 nCnC , is at the origin (xx = 0).

What is (Fnet3)x(Fnet3)x, the x-component of the net force exerted by these two charges on a third charge q3q3 = 50.5 nCnC placed between q1q1 and q2q2 at x3x3 = -1.115 mm ?

Your answer may be positive or negative, depending on the direction of the force.

Express your answer numerically in newtons to three significant figures.

Homework Answers

Answer #2

the electrostatic force constant is

k = 1/(4 Pi epsilon0) = 8.988 x 10^9

q3 is sitting between q1 and q2

since q3 is positive it will be attracted towards and q(which is negative)  and repelled by q2(which is positive)

distance between q3 and q1 is r1 = 1.670-1.115 = 0.555mm = 0.000555 m

distance between q3 and q2 is r2 = 1.115 mm = 0.00115 m

The net force will be in the negative x direction

F = k(q1 q3/r1^2+q2 q3/r2^2) =- 8.988 10^9(13 x 50.5/0.000555^2+39x 50.5/0.00115^2)x 10^-18

F = - 33.4 N

answered by: anonymous
Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Coulomb's law for the magnitude of the force FF  QQ and  Q′Q′ dd is |F|=K|QQ′|d2|F|=K|QQ′|d2, where K=14πϵ0K=14πϵ0, and...
Coulomb's law for the magnitude of the force FF  QQ and  Q′Q′ dd is |F|=K|QQ′|d2|F|=K|QQ′|d2, where K=14πϵ0K=14πϵ0, and ϵ0=8.854×10−12C2/(N⋅m2)ϵ0=8.854×10−12C2/(N⋅m2) is the permittivity of free space. Consider two point charges located on the x axis: one charge, q1q1 = -17.0 nCnC , is located at x1x1 = -1.700 mm ; the second charge, q2q2 = 35.5 nCnC , is at the origin (x=0.0000)(x=0.0000). What is the net force exerted by these two charges on a third charge q3q3 = 51.0 nCnC placed between...
Coulomb's law for the magnitude of the force FFF between two particles with charges QQQ and...
Coulomb's law for the magnitude of the force FFF between two particles with charges QQQ and Q′Q′Q^\prime separated by a distance ddd is |F|=K|QQ′|d2|F|=K|QQ′|d2 , where K=14πϵ0K=14πϵ0 , and ϵ0=8.854×10−12C2/(N⋅m2)ϵ0=8.854×10−12C2/(N⋅m2) is the permittivity of free space. Consider two point charges located on the x axis: one charge, q1q1q_1 = -12.5 nCnC , is located at x1x1x_1 = -1.730 mm ; the second charge, q2q2q_2 = 31.5 nCnC , is at the origin (xx = 0). What is (Fnet3)x(Fnet3)x, the x-component...
Coulomb's law for the magnitude of the force F between two particles with charges Q and...
Coulomb's law for the magnitude of the force F between two particles with charges Q and Q′ separated by a distance d is |F|=K|QQ′|d2, where K=14πϵ0, and ϵ0=8.854×10−12C2/(N⋅m2) is the permittivity of free space. Consider two point charges located on the x axis: one charge, q1 = -10.0 nC , is located at x1 = -1.695 m ; the second charge, q2 = 31.0 nC , is at the origin (x=0.0000). What is the net force exerted by these two...
Coulomb's law for the magnitude of the force F between two particles with charges  Q and  Q′ separated...
Coulomb's law for the magnitude of the force F between two particles with charges  Q and  Q′ separated by a distance d is |F|=K|QQ′|d2, where K=14πϵ0, and ϵ0=8.854×10−12C2/(N⋅m2) is the permittivity of free space. Consider two point charges located on the x axis: one charge, q1 = -14.5 nC , is located at x1 = -1.655 m ; the second charge, q2 = 33.5 nC , is at the origin (x=0.0000). What is the net force exerted by these two charges on...
Coulomb's law for the magnitude of the force F FF between two particles with charges Q...
Coulomb's law for the magnitude of the force F FF between two particles with charges Q QQ and Q ′ Q′Q^\prime separated by a distance d dd is |F|=K |Q Q ′ | d 2 |F|=K|QQ′|d2 , where K= 1 4π ϵ 0 K=14πϵ0 , and ϵ 0 =8.854× 10 −12 C 2 /(N⋅ m 2 ) ϵ0=8.854×10−12C2/(N⋅m2) is the permittivity of free space. Consider two point charges located on the x axis: one charge, q 1 q1q_1 = -20.0...
Coulomb's law for the magnitude of the force F between two particles with charges Q and...
Coulomb's law for the magnitude of the force F between two particles with charges Q and Q′ separated by a distance d is |F|=K |QQ'|/d2 where K=1/4πϵ0 , and ϵ0=8.854×10-12 C2/(N⋅m2) is the permittivity of free space. Consider two point charges located on the x axis: one charge, q1 = -17.0 nCn, is located at X1 = -1.680 m ; the second charge, q2 = 30.0 nC , is at the origin (x = 0). What is (Fnet3)x, the x-component...
Coulomb's law for the magnitude of the force F between two particles with charges Q and...
Coulomb's law for the magnitude of the force F between two particles with charges Q and Q′ separated by a distance d is |F|=K(|QQ′|/d^2) where K=1/(4πϵ0), and ϵ0=8.854×10^−12 C^2/(N⋅m^2) is the permittivity of free space. Consider two point charges located on the x axis: one charge, q1 = -17.5 nC , is located at x1= -1.735 mm ; the second charge, q2 = 36.5 nC , is at the origin (x = 0). What is (Fnet3)x, the x-component of the...
Coulomb's law for the magnitude of the force F between two particles with charges Q and...
Coulomb's law for the magnitude of the force F between two particles with charges Q and Q′separated by a distance d is |F|= (K) |QQ′| / d2 where K=1 / 4πϵ0, and ϵ0=8.854×10−12  C2 / (N⋅m2) is the permittivity of free space. Consider two point charges located on the x axis: one charge, q1 = -13.5 nC , is located at x1 = -1.745 m ; the second charge, q2 = 31.5 nC ,is at the origin (x=0.0000). What is the...
Coulomb's law for the magnitude of the force Fbetween two particles with charges Q and Q′separated...
Coulomb's law for the magnitude of the force Fbetween two particles with charges Q and Q′separated by a distance d is |F|=K|QQ′|/d^2, where K=1/4πϵ0, and ϵ0=8.854×10^−12C^2/(N⋅m^2) is the permittivity of free space. Consider two point charges located on the x axis: one charge, q1 = -19.0 nC , is located at x1 = -1.665 m ; the second charge, q2 = 36.0 nC ,is at the origin (x=0.0000). What is the net force exerted by these two charges on a...
1. The force between two charges is 4×10−9N. If the magnitude of one charge reduced by...
1. The force between two charges is 4×10−9N. If the magnitude of one charge reduced by a factor of two and the distance between the charges is reduced by a factor of two, what is the new force between the charges? 2. What is the magnitude of the electric field from 20cm from a point charge of q=33nC? 3. What is the electric field 10cm from a 50-cm-radius metal sphere carrying −4.5×106C of charge? 4. Point charges are located at...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT