Question

A particle of mass m is projected with an initial velocity v0 in a direction making...

A particle of mass m is projected with an initial velocity v0 in a direction making an angle α with the horizontal level ground as shown in the figure. The motion of the particle occurs under a uniform gravitational field g pointing downward.

(a) Write down the Lagrangian of the system by using the Cartesian coordinates (x, y).

(b) Is there any cyclic coordinate(s). If so, interpret it (them) physically.

(c) Find the Euler-Lagrange equations. Find at least one constant of motion.

(d) Solve the differential equation in part (c) and obtain x and y coordinates of the projectile as a function of time.

(e) Construct the Hamiltonian of the system, H, and write down the Hamilton’s equations (canonical equations) of motion.

Homework Answers

Answer #1

Thank you, please rate if it helps :).

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a) A small block of mass m is confined to move on the inside surface of...
a) A small block of mass m is confined to move on the inside surface of a cone defined by z = aρ, where (ρ, φ, z) give its position in cylindrical coordinates. The block slides without friction along the surface and feels the gravitational force, which is directed in the negative z direction. a. Write down the Lagrangian for the system in terms of the coordinates ρ and φ b) Obtain the Lagrange equations of motion for the coordinate...
A particle of mass, m, in an isolated environment moves along a line with speed v...
A particle of mass, m, in an isolated environment moves along a line with speed v whilst experiencing a force proportional to its distance from the origin. a) Determine the Langrangian of the system b) Determine the Hamiltonian of the system c) Write down Hamilton’s equations of motion for the particle d) Show that the particle executes simple harmonic motion
The block of M=5kg, modeled as a particle, rests on the inclined surface that makes an...
The block of M=5kg, modeled as a particle, rests on the inclined surface that makes an angle of θ with the horizontal ground. The static friction coefficient between the block and the surface is μs=1/3. A force of P is horizontally applied on the block. Take g=10m/s/s for convenience. 1. Draw a free body diagram. 2. Write each force expressed in cartesian vector form. 3. Write down scalar compontent form of equilibrium equations in x and y direction. 4. Find...
The block of M=5kg, modeled as a particle, rests on the inclined surface that makes an...
The block of M=5kg, modeled as a particle, rests on the inclined surface that makes an angle of θ with the horizontal ground. The static friction coefficient between the block and the surface is μs=1/3. A force of P is horizontally applied on the block. Take g=10m/s/s for convenience. Angle of slope is 36.87 1. Draw a free body diagram. 2. Write each force expressed in cartesian vector form. 3. Write down scalar compontent form of equilibrium equations in x...
Your task will be to derive the equations describing the velocity and acceleration in a polar...
Your task will be to derive the equations describing the velocity and acceleration in a polar coordinate system and a rotating polar vector basis for an object in general 2D motion starting from a general position vector. Then use these expressions to simplify to the case of non-uniform circular motion, and finally uniform circular motion. Here's the time-dependent position vector in a Cartesian coordinate system with a Cartesian vector basis: ⃗r(t)=x (t) ̂ i+y(t) ̂ j where x(t) and y(t)...