Question

A coil 5.00 cm in radius, containing 250 turns, is placed in a uniform magnetic field...

A coil 5.00 cm in radius, containing 250 turns, is placed in a uniform magnetic field that varies with time according to:
B = (0.230 T/s)t + (4.00 x 10-5 T/s5)t5.  The coil is connected to a 450 ohm resistor, and its plane is perpendicular to the magnetic field.  The resistance of the coil can be neglected.  Find the induced emf in the coil as a function of time.

Homework Answers

Answer #1

Induced EMF is given by:

EMF = -N*d(phi)/dt

phi = Magnetic flux = B*A*cos theta

So, EMF = -N*A*cos theta*dB/dt

N = number of turns = 250.0 turns

A = area = pi*0.05^2 = 7.85*10^-3 m^2

B = magnetic field = (0.230 T/s)t + (4.00 x 10-5 T/s5)t5

then, dB/dt = (0.230 T/s)*1 + (5*4.00 x 10-5 T/s5)t5-1

dB/dt = (0.230) + (2.00 x 10-4)t4

since, plane of coil is perpendicular to the magnetic field

So, theta = 0 deg, cos theta = 1

then, EMF = -250*7.85*10^-3*cos 0 deg*[(0.230) + (2.00 x 10-4)t4]

EMF = -0.451375 - 3.925*10^-4*t^4

EMF = -(0.451375 - 3.925*10-4*t4)

"Let me know if you have any query."

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
#5. A coil 5.00 cm in radius, containing 250 turns, is placed in a uniform magnetic...
#5. A coil 5.00 cm in radius, containing 250 turns, is placed in a uniform magnetic field that varies with time according to: B = (0.230 T/s)t + (4.00 x 10-5 T/s5)t5.  The coil is connected to a 450 ohm resistor, and its plane is perpendicular to the magnetic field.  The resistance of the coil can be neglected.  Find the induced emf in the coil as a function of time.  (20 pts.)
A 20-turn coil with a diameter of 6.00 cm is placed in a constant, uniform magnetic...
A 20-turn coil with a diameter of 6.00 cm is placed in a constant, uniform magnetic field of 1.00 T directed perpendicular to the plane of the coil. Beginning at time t = 0 s, the field is increased at a uniform rate until it reaches 1.30 T at t = 10.0 s. The field remains constant thereafter. 1) What is the magnitude of the induced emf in the coil at t < 0 s? 2) What is the magnitude...
A 37-turn circular coil of radius 4.60 cm and resistance 1.00 Ω is placed in a magnetic field directed perpendicular to...
A 37-turn circular coil of radius 4.60 cm and resistance 1.00 Ω is placed in a magnetic field directed perpendicular to the plane of the coil. The magnitude of the magnetic field varies in time according to the expression B = 0.010 0t + 0.040 0t2, where B is in teslas and t is in seconds. Calculate the induced emf in the coil at t = 4.20 s.
A 28-turn coil with a diameter of 6.00 cm is placed in a constant, uniform magnetic...
A 28-turn coil with a diameter of 6.00 cm is placed in a constant, uniform magnetic field of 1.00 T directed perpendicular to the plane of the coil. Beginning at time t = 0 s, the field is increased at a uniform rate until it reaches 1.30 T at t = 10.0 s. The field remains constant thereafter. What is the magnitude of the induced emf in the coil at the following times? (a)    t < 0 s mV (b)    t =...
A 149-turn circular coil of radius 2.67 cm is immersed in a uniform magnetic field that...
A 149-turn circular coil of radius 2.67 cm is immersed in a uniform magnetic field that is perpendicular to the plane of the coil. During 0.153 s the magnetic field strength increases from 51.1 mT to 99.3 mT. Find the magnitude of the average EMF, in millivolts, that is induced in the coil during this time interval.
A 29-turn circular coil of radius 3.40 cm and resistance 1.00 Ω is placed in a...
A 29-turn circular coil of radius 3.40 cm and resistance 1.00 Ω is placed in a magnetic field directed perpendicular to the plane of the coil. The magnitude of the magnetic field varies in time according to the expression B = 0.010 0t + 0.040 0t2, where B is in teslas and t is in seconds. Calculate the induced emf in the coil at t = 4.60 s.
A 133 turn circular coil of radius 2.77 cm is immersed in a uniform magnetic field...
A 133 turn circular coil of radius 2.77 cm is immersed in a uniform magnetic field that is perpendicular to the plane of the coil. Over an interval of 0.121 s, the magnetic field strength increases from 55.7 mT to 95.9 mT. Find the magnitude of the average emf avgEavg induced in the coil during this time interval, in millivolts. avg=Eavg= ?
2. A circular coil with 30 turns of wire has a diameter of 2.00 cm. The...
2. A circular coil with 30 turns of wire has a diameter of 2.00 cm. The total resistance of the coil is 0.350 Ω. An applied uniform magnetic field is directed upward, perpendicular to the plane of the coil. a) If the magnetic field changes linearly from 0.000 T to 0.800 T in 0.500 s, what is the induced emf in the coil while the field is changing? b) What is the magnitude and direction (CW or CCW when looked...
A generator is constructed by rotating a coil of N turns in a magnetic field B...
A generator is constructed by rotating a coil of N turns in a magnetic field B at a frequency f. The internal resistance of the coil is R and the cross sectional area of the coil is A. Decide which statements are true and which are false. If the first is T and the rest F, enter TFFFFF. A) The maximum induced EMF occurs when the coil is rotated about an axis parallel to the magnetic field lines. B) The...
A tightly wound circular coil has 43 turns, each of radius 0.165 m. A uniform magnetic...
A tightly wound circular coil has 43 turns, each of radius 0.165 m. A uniform magnetic field is introduced perpendicularly to the plane of the coil. If the field increases in strength from 0 to 0.297 T in 0.435s, what average emf is induced in the windings of the coil?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT