Question

Q6] A hydrogen atom transitions from the ni = 5 state down to the ground state. In the process it emits a photo of light. The photon then strikes a photo-electric material with a work function of Wo = 7.5eV . a) What is the wavelength of the photon emitted from the transition of the hydrogen atom? b) What is the kinetic energy of the electron ejected from the photo-electric material?

Answer #1

For an electron transition from n1 to n2 wavelength of photon emitted is

R is the Rydberg constant

For n1=5 to n2=1 we have

a) So, energy of the photon emitted is

b) As energy of the photon is greater than the work function, electrons will be emitted

Kinetic energy of the electron emitted is

phi is the work function of the metal

Putting the values,

Consider the following four transitions in a hydrogen atom.
(i) ni = 6, nf = 9 (ii) ni = 6, nf = 12 (iii) ni = 10, nf = 12
(iv) ni = 9, nf = 6
(a) Give the wavelength of the longest-wavelength photon that
can be emitted or absorbed by these transitions. m
(b) Give the wavelength of the shortest-wavelength photon that
can be emitted or absorbed by these transitions. m
(c) For which of these transitions does...

(1)
Part A: If a electron in a hydrogen atom makes a transition from
ground state to n = 8 level what wavelength of light in (nm) would
be needed for the abosorbed photon to cause the transition?
Part B: If the same electron falls to a lower level by emmitting
a photon of light in the Paschen series what is the frequncy of
light in (Hz) thats emitted?
(2) When a photon have a wavelength of 195nm strikes the...

A hydrogen atom transitions from the n = 6 excited state to the
n = 3 excited state, emitting a photon.
a) What is the energy, in electron volts, of the electron in the
n = 6 state? How far from the nucleus is the electron?
b) What is the energy, in electron volts, of the photon emitted
by the hydrogen atom? What is the wavelength of this photon?
c) How many different possible photons could the n = 6...

4 a) A hydrogen atom in the ground state absorbs a photon of
wavelength 97.2 nm. What energy level does the electron reach?
b) This excited atom then emits a photon of wavelength 1875.4
nm. What energy level does the electron fall to?

The electron in a hydrogen atom falls from an excited energy
level to the ground state in two steps, causing the emission of
photons with wavelengths of 656.5 nm and 121.6 nm (So the in the
first step the 656.5 nm photon is emitted and in the second step
the 121.6 nm photon is emitted). What is the principal quantum
number (ni) of the initial excited energy level from which the
electron falls?

An electron in a hydrogen atom relaxes to the ground state while
emitting a 93.8 nm photon.
a. Is this light visible? In what region of the electromagnetic
spectrum does it lie?
b. What was the initial principal quantum number, ni, of the
electron undergoing the transition?

What is the wavelength of the photon emitted as the electron in
the hydrogen atom transitions from the 3rd to 2nd level? What is
the frequency of the photon and what is the energy carried by the
photon?
got -6606 A for the first one and I'm not sure if I'm doing it
right

1. a. A photon is absorbed by a hydrogen atom causing an
electron to become excited (nf = 6) from the ground state electron
configuration. What is the energy change of the electron associated
with this transition?
b. After some time in the excited state, the electron falls from
the n = 6 state back to its ground state. What is the change in
energy of the electron associated with this transition?
c. When the electron returns from its excited...

An electron in a hydrogen atom makes a transition from the n =
68 to the n = 4 energy state. Determine the wavelength of the
emitted photon (in nm).

An electron in a hydrogen atom makes a transition from the n = 7
to the n = 2 energy state. Determine the wavelength of the emitted
photon (in nm). Enter an integer.

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 7 minutes ago

asked 38 minutes ago

asked 43 minutes ago

asked 44 minutes ago

asked 51 minutes ago

asked 51 minutes ago

asked 55 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago