Question

Q6] A hydrogen atom transitions from the ni = 5 state down to the ground state....

Q6] A hydrogen atom transitions from the ni = 5 state down to the ground state. In the process it emits a photo of light. The photon then strikes a photo-electric material with a work function of Wo = 7.5eV . a) What is the wavelength of the photon emitted from the transition of the hydrogen atom? b) What is the kinetic energy of the electron ejected from the photo-electric material?

Homework Answers

Answer #1

For an electron transition from n1 to n2 wavelength of photon emitted is

R is the Rydberg constant

For n1=5 to n2=1 we have

a) So, energy of the photon emitted is

b) As energy of the photon is greater than the work function, electrons will be emitted

Kinetic energy of the electron emitted is

phi is the work function of the metal

Putting the values,

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the following four transitions in a hydrogen atom. (i) ni = 6, nf = 9...
Consider the following four transitions in a hydrogen atom. (i) ni = 6, nf = 9 (ii) ni = 6, nf = 12 (iii) ni = 10, nf = 12 (iv) ni = 9, nf = 6 (a) Give the wavelength of the longest-wavelength photon that can be emitted or absorbed by these transitions. m (b) Give the wavelength of the shortest-wavelength photon that can be emitted or absorbed by these transitions. m (c) For which of these transitions does...
(1) Part A: If a electron in a hydrogen atom makes a transition from ground state...
(1) Part A: If a electron in a hydrogen atom makes a transition from ground state to n = 8 level what wavelength of light in (nm) would be needed for the abosorbed photon to cause the transition? Part B: If the same electron falls to a lower level by emmitting a photon of light in the Paschen series what is the frequncy of light in (Hz) thats emitted? (2) When a photon have a wavelength of 195nm strikes the...
A hydrogen atom transitions from the n = 6 excited state to the n = 3...
A hydrogen atom transitions from the n = 6 excited state to the n = 3 excited state, emitting a photon. a) What is the energy, in electron volts, of the electron in the n = 6 state? How far from the nucleus is the electron? b) What is the energy, in electron volts, of the photon emitted by the hydrogen atom? What is the wavelength of this photon? c) How many different possible photons could the n = 6...
4 a) A hydrogen atom in the ground state absorbs a photon of wavelength 97.2 nm....
4 a) A hydrogen atom in the ground state absorbs a photon of wavelength 97.2 nm. What energy level does the electron reach? b) This excited atom then emits a photon of wavelength 1875.4 nm. What energy level does the electron fall to?
The electron in a hydrogen atom falls from an excited energy level to the ground state...
The electron in a hydrogen atom falls from an excited energy level to the ground state in two steps, causing the emission of photons with wavelengths of 656.5 nm and 121.6 nm (So the in the first step the 656.5 nm photon is emitted and in the second step the 121.6 nm photon is emitted). What is the principal quantum number (ni) of the initial excited energy level from which the electron falls?
A hydrogen atom is in its ground state (ni = 1) when a photon impinges upon...
A hydrogen atom is in its ground state (ni = 1) when a photon impinges upon it. The atom absorbs the photon, which has precisely the energy required to raise the atom to the nf = 3 state. (a) What was the photon's energy (in eV)? eV (b) Later, the atom returns to the ground state, emitting one or more photons in the process. Which of the following energies describes photons that might be emitted thus? (Select all that apply.)...
An electron in an excited state of a hydrogen atom emits two photons in succession, the...
An electron in an excited state of a hydrogen atom emits two photons in succession, the first at 3037 nm and the second at 94.92 nm, to return to the ground state (n=1). For a given transition, the wavelength of the emitted photon corresponds to the difference in energy between the two energy levels. What were the principal quantum numbers of the initial and intermediate excited states involved?
An electron in a hydrogen atom relaxes to the ground state while emitting a 93.8 nm...
An electron in a hydrogen atom relaxes to the ground state while emitting a 93.8 nm photon. a. Is this light visible? In what region of the electromagnetic spectrum does it lie? b. What was the initial principal quantum number, ni, of the electron undergoing the transition?
What is the wavelength of the photon emitted as the electron in the hydrogen atom transitions...
What is the wavelength of the photon emitted as the electron in the hydrogen atom transitions from the 3rd to 2nd level? What is the frequency of the photon and what is the energy carried by the photon? got -6606 A for the first one and I'm not sure if I'm doing it right
Five possible transitions for a hydrogen atom are listed below: Select whether the atom gains or...
Five possible transitions for a hydrogen atom are listed below: Select whether the atom gains or loses energy for each transition. Loses Gains  ni = 7; nf = 4 Loses Gains  ni = 4; nf = 6 Loses Gains  ni = 2; nf = 6 Loses Gains  ni = 7; nf = 3 Loses Gains  ni = 3; nf = 5 Tries 0/10 Find the transition where the atom gains the most energy. How much energy does the atom gain? Tries 0/10 Find the transition...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT