Question

A 27.0-μF capacitor and a 50.0-μF capacitor are charged by being connected across separate 40.0-V batteries....

A 27.0-μF capacitor and a 50.0-μF capacitor are charged by being connected across separate 40.0-V batteries.

(a) Determine the resulting charge on each capacitor. (Give your answer to at least three significant figures.)

27.0-μF capacitor     1.08   mC
50.0-μF capacitor     2    mC


(b) The capacitors are then disconnected from their batteries and connected to each other, with each negative plate connected to the other positive plate. What is the final charge of each capacitor?

27.0-μF capacitor     ?????
50.0-μF capacitor     ?????

(c) What is the final potential difference across the 50.0-μF capacitor?

?????

*I just need help on parts b and c

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 2.50-μF capacitor is charged to 754 V and a 6.80-μF capacitor is charged to 574...
A 2.50-μF capacitor is charged to 754 V and a 6.80-μF capacitor is charged to 574 V . These capacitors are then disconnected from their batteries. Next the positive plates are connected to each other and the negative plates are connected to each other. What will be the potential difference across each and the charge on each? [Hint: Charge is conserved.] Determine the potential difference across the first capacitor. Determine the potential difference across the second capacitor. Determine the charge...
A 2.70 μF capacitor is charged to 500 V and a 3.95 μF capacitor is charged...
A 2.70 μF capacitor is charged to 500 V and a 3.95 μF capacitor is charged to 525 V . a) These capacitors are then disconnected from their batteries, and the positive plates are now connected to each other and the negative plates are connected to each other. What will be the potential difference across each capacitor? b) What will be the charge on each capacitor? c) What is the voltage for each capacitor if plates of opposite sign are...
A 2.85 μF capacitor is charged to 490 V and a 3.80 μF capacitor is charged...
A 2.85 μF capacitor is charged to 490 V and a 3.80 μF capacitor is charged to 525 V . A) These capacitors are then disconnected from their batteries, and the positive plates are now connected to each other and the negative plates are connected to each other. What will be the potential difference across each capacitor? (Enter your answers numerically separated by a comma.) B) What will be the charge on each capacitor? (Enter your answers numerically separated by...
A 2.50 F capacitor is charged to 857 V and a 6.80F capacitor is charged to...
A 2.50 F capacitor is charged to 857 V and a 6.80F capacitor is charged to 652 V. These capacitors are then disconnected from their batteries. Next the positive plates are connected to each other and the negative plates are connected to each other. What will be the potential difference across each and the charge on each? [Hint: charge is conserved.]
Two capacitors of capacitances 1.1 μF and 4.7 μF are each charged separately by being connected...
Two capacitors of capacitances 1.1 μF and 4.7 μF are each charged separately by being connected across a 7.8 V battery. After being fully charged, they are disconnected from the battery and then connected to each other using wires so that the plates of opposite charges are connected together. What will be the magnitude of the final voltage (in V) across the 4.7 μF capacitor?
A 2.66 ?μF capacitor is charged by being connected across a 12.0-V battery. (a)Find the charge...
A 2.66 ?μF capacitor is charged by being connected across a 12.0-V battery. (a)Find the charge on the capacitor. (b)Find the potential energy of the charged capacitor.
A 6.0 µF capacitor and a 5.0 µF capacitor are connected in series across a 3.0...
A 6.0 µF capacitor and a 5.0 µF capacitor are connected in series across a 3.0 kV potential difference. The charged capacitors are then disconnected from the source and connected to each other with terminals of like sign together. Find the charge on each capacitor (in mC) and the voltage across each capacitor (in V).
A 2.14 μF capacitor and a 5.62 μF capacitor are connected in series across an 18.0...
A 2.14 μF capacitor and a 5.62 μF capacitor are connected in series across an 18.0 V battery. What voltage would be required to charge a parallel combination of the same two capacitors to the same total energy?
3. A 1.0 μF capacitor and a 2.0 μF capacitor are connected in different ways across...
3. A 1.0 μF capacitor and a 2.0 μF capacitor are connected in different ways across the terminals of a 12 Volt battery. What is (i) the voltage on each capacitor, (ii) the charge on each capacitor, and (iii) the total energy stored in the capacitors when (a) the capacitors are connected end-to-end (in series)? and (b) the capacitors are connected side-to-side (in parallel)?
A 20 muF capacitor is charged by being connected to a 100 V battery. The capacitor...
A 20 muF capacitor is charged by being connected to a 100 V battery. The capacitor is then disconnected from the battery and connected to an uncharged 10 muF capacitor. Find the final charge on each capacitor.