Question

Two blocks are held together, with a compressed spring between them, on a horizontal frictionless surface....

Two blocks are held together, with a compressed spring between them, on a horizontal frictionless surface. When the system is released, the spring pushes the blocks apart and they then move off in opposite directions. The spring remains behind, and you can assume that all of its energy is transformed to the kinetic energy of the blocks. Find the kinetic energy of block A HomeworkUnanswered The mass of block A is 3.00 times the mass of block B, and the energy stored in the spring was 240 J. What is the kinetic energy of block A after it is no longer in contact with the spring? See if you can work this out without a calculator. _______ J

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Particle A and particle B are held together with a compressed spring between them. When they...
Particle A and particle B are held together with a compressed spring between them. When they are released, the spring pushes them apart and they then fly off in opposite directions, free of the spring. The mass of A is 4.00 times the mass of B, and the energy stored in the spring was 85 J. Assume that the spring has negligible mass and that all its stored energy is transferred to the particles. Once that transfer is complete, what...
Particle A and particle B are held together with a compressed spring between them. When they...
Particle A and particle B are held together with a compressed spring between them. When they are released, the spring pushes them apart and they then fly off in opposite directions, free of the spring. The mass of A is 5.00 times the mass of B, and the energy stored in the spring was 55 J. Assume that the spring has negligible mass and that all its stored energy is transferred to the particles. Once that transfer is complete, what...
Particle A and particle B are held together with a compressed spring between them. When they...
Particle A and particle B are held together with a compressed spring between them. When they are released, the spring pushes them apart and they then fly off in opposite directions, free of the spring. The mass of A is 5.00 times the mass of B, and the energy stored in the spring was 45 J. Assume that the spring has negligible mass and that all its stored energy is transferred to the particles. Once that transfer is complete, what...
A 3.0-kg block sliding on a frictionless horizontal surface is accelerated by a compressed spring. If...
A 3.0-kg block sliding on a frictionless horizontal surface is accelerated by a compressed spring. If the 200 N/m spring is initially compressed 10 cm, determine (a) the potential energy stored in the spring. As the block leaves the spring, find (b) the kinetic energy of the block, and (c) the velocity of the block.
Two blocks with masses 3.0 kg and 5.0 kg are placed on a horizontal frictionless surface....
Two blocks with masses 3.0 kg and 5.0 kg are placed on a horizontal frictionless surface. A light spring is placed in a horizontal position between the blocks. The blocks are pushed together, compressing the spring, and then released from rest. After contact with the spring ends, the 5.0-kg mass has a speed of 2.0 m/s. How much potential energy was stored in the spring when the blocks were released?
A wooden block with mass 1.80 kg is placed against a compressed spring at the bottom...
A wooden block with mass 1.80 kg is placed against a compressed spring at the bottom of a slope inclined at an angle of 34.0 ? (point A). When the spring is released, it projects the block up the incline. At point B, a distance of 6.00 m up the incline from A, the block is moving up the incline at a speed of 6.45 m/s and is no longer in contact with the spring. The coefficient of kinetic friction...
Blocks A (mass 3.5 kg) and B (mass 5.5 kg) move on a frictionless, horizontal surface....
Blocks A (mass 3.5 kg) and B (mass 5.5 kg) move on a frictionless, horizontal surface. Initially, block B is at rest and block A is moving toward it at 2.0 m/s. The blocks are equipped with ideal spring bumpers (as in Example 8.10, Section 8.4). The collision is head-on, so all motion before and after the collision is along a straight line. (a) Find the maximum energy stored in the spring bumpers, in Joules. (b) Find the velocity of...
A 0.36-kg cart and a 0.11-kg cart are held together with a compressed spring between them....
A 0.36-kg cart and a 0.11-kg cart are held together with a compressed spring between them. When they are released, the 0.36-kg cart moves at 1.1 m/s to the right. .How much elastic potential energy was stored in the spring before the release?
Consider that you have two blocks and they are connected to each other with a spring....
Consider that you have two blocks and they are connected to each other with a spring. Block A has mass 1.00 kg, and block B has mass 3.00 kg. The blocks are compressed with a spring S between them; then the system is released from rest on a level, frictionless surface. The spring, which has negligible mass, is not fastened to either block and drops to the surface after it has expanded. The spring has force constant 723 N/m and...
A block of mass 0.25 kg is against a spring compressed at 0.20 m with spring...
A block of mass 0.25 kg is against a spring compressed at 0.20 m with spring constant 50 N/m. When the spring is released, the block moves along the frictionless surface until entering a region with the coefficient of kinetic friction equal to 0.30 (when the block enters the friction region it is no longer in contact with the spring ). How far,L,into the region with friction does the block slide before stopping?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT