Question

Two blocks slide on a collision course across a frictionless surface, as in the figure. The...

Two blocks slide on a collision course across a frictionless surface, as in the figure. The resulting collision is inelastic. The first block has mass ,M = 1.40 kg and is initially sliding due north at a speed of Vi = 9.15 m/s. The second block has mass ,m = 7.20 ✕ 10−2 kg and is initially sliding at a speed of  vi = 11.5 m/s directed at an angle θ = 27.5° south of east. Immediately after the inelastic collision, the second block is observed sliding at vf = 5.15 m/s in a direction of ϕ = 21.5° north of east.

Determine the components of the first block's velocity after the collision.

Vxf = ______m/s
Vyf = _______m/s

Question 6.2B

During a fireworks display, a 0.300-kg bottle rocket approaches the top of its trajectory and explodes into two pieces as in the figure. The first piece (Piece 1) has mass 0.200 kg and the second piece (Piece 2) has mass 0.100 kg.Immediately after the explosion, the first piece is observed traveling to the left at a speed of 4.00 m/s and the second piece is observed traveling at an angle  = 30.0° above the horizon at a speed of 17.0 m/s.

Determine the components of the bottle rocket's velocity immediately before the explosion.

Vxi = ____ m/s
Vyi = _____m/s

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two cars, both of mass m, collide and stick together. Prior to the collision, one car...
Two cars, both of mass m, collide and stick together. Prior to the collision, one car had been traveling north at speed 3v, while the second was traveling at speed 2v at an angle ? south of east (as indicated in the figure). After the collision, the two-car system travels at speed vfinal at an angle ? east of north. (Figure 1) Find the speed vfinal of the joined cars after the collision. Express your answer in terms of v...
An exploding cannonball is initially launched at a speed of 75.0 m/s at an angle of...
An exploding cannonball is initially launched at a speed of 75.0 m/s at an angle of 30.0 ◦ above the horizontal. At its highest point, the cannonball explodes into three pieces. The first piece, with a mass of 2.00 kg, heads straight upward at a speed of 15.0 m/s immediately after the explosion. The second piece, with mass of 2.50 kg, initially moves in the direction 15.0 ◦ above the horizontal immediately after the explosion. The third piece, with a...
A 5.40  kg mess kit sliding on a frictionless surface explodes into two 2.70  kg parts, one moving...
A 5.40  kg mess kit sliding on a frictionless surface explodes into two 2.70  kg parts, one moving at 3.50  m/s , due North, and the other at 5.50  m/s , 29.0  degrees North of East. 1.) What is the original speed of the mess kit? 2.) In what direction was the mess kit originally traveling? Give your answer as an angle in degrees measured CCW from due East (when looking Down); the size of the angle should be less than 180 degrees. If the...
In a game a few years ago, two football players crash into each other during a...
In a game a few years ago, two football players crash into each other during a tackle. The first player (mass 115 kg) is traveling at 5.78 m/s, at an angle of 49.4 degrees south of east. The second player (mass 98.0 kg) is traveling at 7.94 m/s, at an angle of 40.4 degrees north of east. The two players then collide, and stick together right after the collision. Define north as positive y and east as positive x. A....
Two blocks are connected by a massless string that runs across a frictionless pulley with a...
Two blocks are connected by a massless string that runs across a frictionless pulley with a mass of 5.00 kg and a radius of 10.0 cm. The first block with an unknown mass of m1 sits on a horizontal surface and is also connected to a spring with a spring constant of k = 250 N/m. The coefficient of kinetic friction between the first block and the surface is 0.400. The second block with a mass of m2 = 6.00...
Block 2 with mass m2=5.0 kg is at rest on a frictionless surface and connected to...
Block 2 with mass m2=5.0 kg is at rest on a frictionless surface and connected to a spring constant k=64.0 N/m. The other end of the spring is connected to a wall, and the spring is initially at its equilibrium (unstretched) position. Block 1 with mass m1=10.0 is initially traveling with speed v1=4.0 m/s and collides with block 2. The collision is instantaneous, and the blocks stick together after the collision. Find the speed of the blocks immediately after the...
Two pieces of clay are moving directly toward each other. When they collide, they stick together...
Two pieces of clay are moving directly toward each other. When they collide, they stick together and move as one piece. One piece has a mass of 324 grams and is moving to the right at a speed of 1.15 m/s. The other piece has mass 625 grams and is moving to the left at a speed of 0.87 m/s. What fraction of the total initial kinetic energy is lost during the collision? In other words what is (KE?i???KE?f???? )/...
Block 1 has a mass of 0.35 kg and is on a frictionless surface. It has...
Block 1 has a mass of 0.35 kg and is on a frictionless surface. It has an initial speed of 1.2 m/s and it elastically collides with block 2 that was initially stationary. After the collision, the first block has a speed of 0.2 m/s in the opposite direction. a) What is the speed of block 2? b) What is the mass of block 2? c) If the collision time was 0.002 s, what was the average force on block...
A.) A block of mass 1.12 kg is placed on a frictionless floor and initially pushed...
A.) A block of mass 1.12 kg is placed on a frictionless floor and initially pushed northward, whereupon it begins sliding with a constant speed of 4.23 m/s. It eventually collides with a second, stationary block, of mass 3.60 kg, head-on, and rebounds back to the south. The collision is 100% elastic. What will be the speeds of the 1.12-kg and 3.60-kg blocks, respectively, after this collision? Multiple choice 2.22 m/s and 2.01 m/s 2.01 m/s and 2.22 m/s 1.71...
A 6.0 kg block is sliding on a leve, frictionless surface at a speed of 5.0...
A 6.0 kg block is sliding on a leve, frictionless surface at a speed of 5.0 m/s when it undergoes a head-on, perfectly inelastic collision with a 4.0 kg block that is initially at rest on the top of a frictionless, 2.0 m high inclined plane. A) What is the speed of the combined blocks when they reach the bottom of the incline? B) If the ground at the bottom of the incline is level, and if the coefficient of...