Question

A liquid of density 860 kg/m3 flows through a horizontal pipe that has a cross-sectional area...

A liquid of density 860 kg/m3 flows through a horizontal pipe that has a cross-sectional area of 1.40 x 10-2 m2 in region A and a cross-sectional area of 9.40 x 10-2 m2 in region B. The pressure difference between the two regions is 6.10 x 103 Pa. What are (a) the volume flow rate and (b) the mass flow rate?

p.s. please box the final answers.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
At a soft drink bottling plant, a horizontal section of pipe carrying citric acid in liquid...
At a soft drink bottling plant, a horizontal section of pipe carrying citric acid in liquid form goes from a cross-sectional area of 8.00 cm2, fluid flow speed of 330 cm/s, and pressure of 1.40 105 Pa to a section of pipe with a cross-sectional area of 3.60 cm2. The density of the citric acid is 1660 kg/m3. For the section of smaller pipe, determine the liquid flow speed and the liquid pressure.
A pipe has a cross sectional area of 10 cm2 with an unknown fluid, density of...
A pipe has a cross sectional area of 10 cm2 with an unknown fluid, density of 1150 kg/m3 moving at a speed of 3 m/s and has a pressure of 1.4 atm. The pipe then lowers down 2.5 meters and narrows to a cross sectional area of 2.5 cm2. What is the speed of the fluid? 1 atm = 1.01 x 105 Pa. express your answer with the correct units Determine the pressure in atm of the fluid in the...
Water flows through a horizontal pipe with a cross-sectional area of 8 m2 at a speed...
Water flows through a horizontal pipe with a cross-sectional area of 8 m2 at a speed of 12 m/s with a pressure of 200,000 Pascals at point A. At point B, the cross-sectional area is 6 m2 (7.5 points) Calculate the pressure at point B
A liquid (ρ = 1.65 g/cm3) flows through a horizontal pipe of varying cross section as...
A liquid (ρ = 1.65 g/cm3) flows through a horizontal pipe of varying cross section as in the figure below. In the first section, the cross-sectional area is 10.0 cm2, the flow speed is 246 cm/s, and the pressure is 1.20 105 Pa. In the second section, the cross-sectional area is 4.50 cm2. (a) Calculate the smaller section's flow speed. m/s (b) Calculate the smaller section's pressure. Pa
A horizontal pipe has a cross-sectional area of 0.025m2 at the entrance and 0.010m2 at the...
A horizontal pipe has a cross-sectional area of 0.025m2 at the entrance and 0.010m2 at the exit. If water enters the pipe at a speed of 2.5 m/s and a gauge pressure of 46kPa, what is the gauge pressure of the water at the exit end? The density of water is 1000 kg/m3.
Water is flowing in a straight horizontal pipe of variable cross section. Where the cross-sectional area...
Water is flowing in a straight horizontal pipe of variable cross section. Where the cross-sectional area of the pipe is 2.90·10-2 m2, the pressure is 10.90·105 Pa and the velocity is 0.310 m/s. In a constricted region where the area is 10.30·10-4 m2, what is the velocity? (in m/s) A: 1.97 B: 2.86 C: 4.15 D: 6.02 E: 8.73 F: 1.27×101 G: 1.84×101 H: 2.66×101 Tries 0/12 What is the pressure (in Pa)? (Assume an ideal fluid) A: 8.24×105 B:...
9) If the pressure in a pipe with a cross sectional area of 2.0 m2 is...
9) If the pressure in a pipe with a cross sectional area of 2.0 m2 is 150,000 Pa and the velocity of the fluid is 5.0 m/sec, what will be the pressure in the pipe at another point that is 4.0 m higher and has a cross sectional area of 6.0 m2 ?
A liquid of density 1.33 × 103 kg/m3 flows steadily through a pipe of varying diameter...
A liquid of density 1.33 × 103 kg/m3 flows steadily through a pipe of varying diameter and height. At location 1 along the pipe the flow speed is 9.15 m/s and the pipe diameter is 11.5 cm. At location 2 the pipe diameter is 17.3 cm. At location 1 the pipe is 9.89 m higher than it is at location 2. Ignoring viscosity, calculate the difference between the fluid pressure at location 2 and the fluid pressure at location 1.
A liquid of density 1.19 × 103 kg/m3 flows steadily through a pipe of varying diameter...
A liquid of density 1.19 × 103 kg/m3 flows steadily through a pipe of varying diameter and height. At location 1 along the pipe the flow speed is 9.79 m/s and the pipe diameter is 10.7 cm. At location 2 the pipe diameter is 14.1 cm. At location 1 the pipe is 8.75 m higher than it is at location 2. Ignoring viscosity, calculate the difference between the fluid pressure at location 2 and the fluid pressure at location 1.
A liquid of density 1.37 × 103 kg/m3 flows steadily through a pipe of varying diameter...
A liquid of density 1.37 × 103 kg/m3 flows steadily through a pipe of varying diameter and height. At location 1 along the pipe the flow speed is 9.47 m/s and the pipe diameter is 11.1 cm. At location 2 the pipe diameter is 17.1 cm. At location 1 the pipe is 9.37 m higher than it is at location 2. Ignoring viscosity, calculate the difference between the fluid pressure at location 2 and the fluid pressure at location 1.