Question

A spring is compressed 1.5m by a a 4kg mass, which isn't attached, and the spring...

A spring is compressed 1.5m by a a 4kg mass, which isn't attached, and the spring has a force constant of 300N/m. Assume the surface has no friction

How fast is the mass moving when it returns to equilibrium after release?

How long does it take in seconds for the mass to return to the equilibrium position after release?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A block with mass 0.382 kg is attached to a horizontal spring with spring constant k...
A block with mass 0.382 kg is attached to a horizontal spring with spring constant k = 1.28 N/m on a frictionless surface. The block is pulled 0.753 m from equilibrium and released. (a) What is the amplitude of the block's motion? (b) What is its period? (c) How long after release does the block take to first return to its equilibrium position? (d) What is its speed at that position? {b. 3.43 s, d. 1.38 m/s} a) A=0.753m b)...
. A block of mass 2.00 kg is attached to a horizontal spring with a force...
. A block of mass 2.00 kg is attached to a horizontal spring with a force constant of 500 N/m. The spring is stretched 5.00 cm from its equilibrium position and released from rest. Use conservation of mechanical energy to determine the speed of the block as it returns to equilibrium (a) if the surface is frictionless (b) if the coefficient of kinetic friction between the block and the surface is 0.350
6) A mass of 3 kg is attached to a massless spring with a force constant...
6) A mass of 3 kg is attached to a massless spring with a force constant 500 N/m. The mass rests on a horizontal frictionless surface. The system is compressed a distance of 30 cm from the springs initial position and then released. The momentum of the mass when the spring passes its equilibrium position is? 8660.25m/s Is this right
A book with mass 2.90 kg is attached to a spring. The spring has force constant...
A book with mass 2.90 kg is attached to a spring. The spring has force constant k= 290 N/m and negligible mass. The spring gets compressed x=0.300 m. The book is released and slides along å surface with kinetic friction coefficient 0.3. a) If the spring and the surface are horisontal, how far from the starting point ( when the spring is compressed) will the book slip before it stops? b) If the spring had been mounted on a slope...
A spring has a constant of 270 N/m. A mass of 83 kg is attached to...
A spring has a constant of 270 N/m. A mass of 83 kg is attached to the spring, pulled down a distance of 5 meters and then released. What is the position of the object 2 seconds after the release? What is the velocity of the object 3 seconds after the release?
A 1 kg mass is on a horizontal frictionless surface and is attached to a horizontal...
A 1 kg mass is on a horizontal frictionless surface and is attached to a horizontal spring with a spring constant of 144 N/m. The spring's unstretched length is 20 cm. You pull on the mass and stretch the spring 5 cm and release it. What is the position of the mass at 15 seconds? What is the magnitude of its velocity at that instant? The mass spring system is now flipped vertically such that gravity must be included in...
A 150 gram mass is attached to a horizontally aligned spring on a frictionless surface. A...
A 150 gram mass is attached to a horizontally aligned spring on a frictionless surface. A force of 10 Newtons will stretch the spring 25 centimeters. If the spring is compressed to 15 centi¬me¬ters and then released, calculate: the spring constant; the frequency and period of the system; and the position and speed of the mass one minute after it is released.
A 0.5-kg mass is attached to a spring with spring constant 2.5 N/m. The spring experiences...
A 0.5-kg mass is attached to a spring with spring constant 2.5 N/m. The spring experiences friction, which acts as a force opposite and proportional to the velocity, with magnitude 2 N for every m/s of velocity. The spring is stretched 1 meter and then released. (a) Find a formula for the position of the mass as a function of time. (b) How much time does it take the mass to complete one oscillation (to pass the equilibrium point, bounce...
A block of mass m = 0.53 kg attached to a spring with force constant 119...
A block of mass m = 0.53 kg attached to a spring with force constant 119 N/m is free to move on a frictionless, horizontal surface as in the figure below. The block is released from rest after the spring is stretched a distance A = 0.13 m. (Indicate the direction with the sign of your answer. Assume that the positive direction is to the right.) The left end of a horizontal spring is attached to a vertical wall, and...
Consider an undamped spring with spring constant k = 9N/m and with a mass attached with...
Consider an undamped spring with spring constant k = 9N/m and with a mass attached with mass 4kg. We apply a driving force of F(t) = sin(3t/2). Solve the IVP for the position of the mass x(t) with the string initially at rest at the equilibrium (so x(0) = 0 and ˙x(0) = 0). (Hint: Guess a particular solution of the form Ct cos(3t/2) and find the constant C.)