Question

1The figure below shows an overhead view of a ring that can rotate about its center...

1The figure below shows an overhead view of a ring that can rotate about its center like a merry-go-round. Its outer radius R2 is 0.770 m, its inner radius R1 is R2/2.00, its mass M is 8.70 kg, and the mass of the crossbars at its center is negligible. It initially rotates at an angular speed of 7.80 rad/s with a cat of mass m = M/4.00 on its outer edge, at radius R2. By how much does the cat increase the kinetic energy of the cat–ring system if the cat crawls to the inner edge, at radius R1?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The figure shows an overhead view of a ring that can rotate about its center like...
The figure shows an overhead view of a ring that can rotate about its center like a merry-go-round. Its outer radius R2 is 1.0 m, its inner radius R1 is R2/2, its mass M is 7.9 kg, and the mass of the crossbars at its center is negligible. It initially rotates at an angular speed of 7.3 rad/s with a cat of mass m = M/4 on its outer edge, at radius R2. By how much does the cat increase...
The figure shows an overhead view of a ring that can rotate about its center like...
The figure shows an overhead view of a ring that can rotate about its center like a merry-go-round. Its outer radius R2 is 0.9 m, its inner radius R1 is R2/2, its mass M is 8.0 kg, and the mass of the crossbars at its center is negligible. It initially rotates at an angular speed of 8.5 rad/s with a cat of mass m = M/4 on its outer edge, at radius R2. By how much does the cat increase...
A 97.3-kg horizontal circular platform rotates freely with no friction about its center at an initial...
A 97.3-kg horizontal circular platform rotates freely with no friction about its center at an initial angular velocity of 1.53 rad/s. A monkey drops a 8.69-kg bunch of bananas vertically onto the platform. They hit the platform at 4/5 of its radius from the center, adhere to it there, and continue to rotate with it. Then the monkey, with a mass of 21.9 kg, drops vertically to the edge of the platform, grasps it, and continues to rotate with the...
A 86.9-kg horizontal circular platform rotates freely with no friction about its center at an initial...
A 86.9-kg horizontal circular platform rotates freely with no friction about its center at an initial angular velocity of 1.65 rad/s. A monkey drops a 8.57-kg bunch of bananas vertically onto the platform. They hit the platform at 4/5 of its radius from the center, adhere to it there, and continue to rotate with it. Then the monkey, with a mass of 20.5 kg, drops vertically to the edge of the platform, grasps it, and continues to rotate with the...
A 95.3-kg horizontal circular platform rotates freely with no friction about its center at an initial...
A 95.3-kg horizontal circular platform rotates freely with no friction about its center at an initial angular velocity of 1.77 rad/s. A monkey drops a 9.89-kg bunch of bananas vertically onto the platform. They hit the platform at 4/5 of its radius from the center, adhere to it there, and continue to rotate with it. Then the monkey, with a mass of 20.1 kg, drops vertically to the edge of the platform, grasps it, and continues to rotate with the...
A uniform disk of radius 0.529 m and unknown mass is constrained to rotate about a...
A uniform disk of radius 0.529 m and unknown mass is constrained to rotate about a perpendicular axis through its center. A ring with same mass as the disk\'s is attached around the disk\'s rim. A tangential force of 0.223 N applied at the rim causes an angular acceleration of 0.103 rad/s2. Find the mass of the disk.
A hanging weight, with a mass of m1 = 0.365 kg, is attached by a cord...
A hanging weight, with a mass of m1 = 0.365 kg, is attached by a cord to a block with mass m2 = 0.815 kg as shown in the figure below. The cord goes over a pulley with a mass of M = 0.350 kg. The pulley can be modeled as a hollow cylinder with an inner radius of R1 = 0.0200 m, and an outer radius of R2 = 0.0300 m; the mass of the spokes is negligible. As...
A hanging weight, with a mass of m1 = 0.370 kg, is attached by a string...
A hanging weight, with a mass of m1 = 0.370 kg, is attached by a string to a block with mass m2 = 0.850 kg as shown in the figure below. The string goes over a pulley with a mass of M = 0.350 kg. The pulley can be modeled as a hollow cylinder with an inner radius of R1 = 0.0200 m, and an outer radius of R2 = 0.0300 m; the mass of the spokes is negligible. As...
A hanging weight, with a mass of m1 = 0.355 kg, is attached by a rope...
A hanging weight, with a mass of m1 = 0.355 kg, is attached by a rope to a block with mass m2 = 0.845 kg as shown in the figure below. The rope goes over a pulley with a mass of M = 0.350 kg. The pulley can be modeled as a hollow cylinder with an inner radius of R1 = 0.0200 m, and an outer radius of R2 = 0.0300 m; the mass of the spokes is negligible. As...
1) A disk of pizza dough is being tossed and spun about its center. As it...
1) A disk of pizza dough is being tossed and spun about its center. As it spins, it stretches and increases its radius. When this happens, what happens to the rotational velocity? Group of answer choices: The rotational velocity stays the same. The rotational velocity decreases. The rotational velocity increases. 2) 10 kids are riding on a merry-go-round. The merry-go-round has a radius of 3 m and a mass of 2000 kg, and it is spinning with an angular velocity...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT