Question

Two point particles, A and B, with masses 4 kg and 6 kg, respectively, are connected...

Two point particles, A and B, with masses 4 kg and 6 kg, respectively, are connected by a rigid massless rod with a length of 0.6 m. The entire system is able to freely rotate, but is initially at rest. The following net torque acts on the system:

T(net) (t)= (2 Nm/s)t

What is the work (in J) done by this torque for during the first 2 s it acts on the particles?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
(a) A light, rigid rod of length ℓ = 1.00 m joins two particles, with masses...
(a) A light, rigid rod of length ℓ = 1.00 m joins two particles, with masses m1 = 4.00 kg and m2 = 3.00 kg, at its ends. The combination rotates in the xy-plane about a pivot through the center of the rod (see figure below). Determine the angular momentum of the system about the origin when the speed of each particle is 4.80 m/s. (Enter the magnitude to at least two decimal places in kg · m2/s.) Two masses...
Two boxes, masses 10 kg and 8 kg, are attached to the end of a massless...
Two boxes, masses 10 kg and 8 kg, are attached to the end of a massless rod which pivots at 2 m from the left corner and held above the ground. The 10 kg mass is attached to the left end. The total length of the rod is 10 m. 1. Find the moment of inertia of the system around the pivoted point. 2. Find the net torque of the system when the massless rod is horizontal. 3. Calculate the...
A dumbbell is made out of two 4.5 kg masses connected by a rod of negligible...
A dumbbell is made out of two 4.5 kg masses connected by a rod of negligible mass which is 30 cm long. How much work, in joules, is required to take the dumbbell from rest to an angular speed of 5.0 rad/s? Treat the masses as particles: rotation is about the center of mass.
Two blocks of masses of 2.00 kg and 4.00 kg are connected by a massless string...
Two blocks of masses of 2.00 kg and 4.00 kg are connected by a massless string going over a smooth, massless pulley. The table on which the smaller mass rest is frictionless. The other side of the 2.00 kg mass is connected to a spring of k=250 N/m and the far end of the spring is tied to a fixed point. The system is release from rest with the spring at its relaxed length. A.) what is the speed of...
Two 0.2-kg masses are located at either end of a 1-m long very light and rigid...
Two 0.2-kg masses are located at either end of a 1-m long very light and rigid rod, as shown. a) What is the rotational inertia of this system about an axis through the center of the rod? b) What is the rotational acceleration of this system if a net torque of 10 N∙m is applied to it?
Two blocks A and B with masses of 50 and 100 kg, respectively, are connected by...
Two blocks A and B with masses of 50 and 100 kg, respectively, are connected by a rope, the pulley is frictionless and of negligible mass. The coefficient of kinetic friction between block A and the inclined plane is 0.25. If block A moves from C to D a distance of 10m. Assume part of rest. Angle is 35. Determine: a) The change in kinetic energy of block A, b) The change in potential energy in block B, c) Calculate...
A dumbbell is made out of two 4.5 kg masses connected by a road of negligible...
A dumbbell is made out of two 4.5 kg masses connected by a road of negligible mass which is 30 cm long. How much work, in joules, is required to take the dumbbell from rest to an angular speed of 0.5 rad/s? Treat the masses as particles; rotation is about the center of mass.
A rod of length l=1.1m and mass M= 5.5kg joins two particles with masses m1 =4.8kg...
A rod of length l=1.1m and mass M= 5.5kg joins two particles with masses m1 =4.8kg and m2 = 2.8kg, at its ends. The combination rotates in the xy-plane about a pivot through the center of the rod with the linear speed of the masses of v= 3.5 m/s. (Moment of inertia of a uniform rod rotating about its center of mass I= 1 12 M l2 ) angularmomentum a) Calculate the total moment of inertia of the system I...
A rod of length l=2.2m and mass M= 9.7kg joins two particles with masses m1 =12.9kg...
A rod of length l=2.2m and mass M= 9.7kg joins two particles with masses m1 =12.9kg and m2 = 5.0kg, at its ends. The combination rotates in the xy-plane about a pivot through the center of the rod with the linear speed of the masses of v= 12.9 m/s. (Moment of inertia of a uniform rod rotating about its center of mass I= 1 12 M l2 ) a) Calculate the total moment of inertia of the system I =...
A cylindrical rod of length 2.0 m, radius 0.5 m, and mass 1.5 kg has two...
A cylindrical rod of length 2.0 m, radius 0.5 m, and mass 1.5 kg has two spheres attached on its ends. The centers of the spheres are 1.0 m from the center of the rod. The mass of each sphere is 0.66 kg. The rod is capable of rotating about an axis passing through its center and perpendicular to the plane of the page, but the set up is stationary to begin with. A small mass of value 0.19 kgmoving...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT