Question

Rearrange the steps for experimenting with the principle of energy conservation correctly - We compare the...

Rearrange the steps for experimenting with the principle of energy conservation correctly


-
We compare the position energy and the kinetic energy of the body. We repeat the previous steps for a different height and then arrange the results in a table.





-
We release the ball and then record the fall time through the watch that came with the device. At the same height, we reset the time three times and then compute the mean to be t.





-
Assign the mass of the metal sphere to assume the mass M. Then we put the device to the on position and then put the ball at a certain height h.



1.
We determine the velocity of the ball’s fall through the equation: v is equal to g t



-
We find the position energy of the sphere by E is a lower guide p is equal to M g h then kinetic energy E a lower guide k is equal to 1 over 2 M V s2.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Step 1: Before the collision, the total momentum is pbefore = mv0 + 0 where m...
Step 1: Before the collision, the total momentum is pbefore = mv0 + 0 where m is the ball’s mass and v0 is the ball’s speed. The pendulum is not moving so its contribution to the total momentum is zero. After the collision, the total momentum is pafter = (m + M) V, where m is the ball’s mass, M is the pendulum mass, and V is the velocity of the pendulum with the ball stuck inside (see the picture...
The two equations below express conservation of energy and conservation of mass for water flowing from...
The two equations below express conservation of energy and conservation of mass for water flowing from a circular hole of radius 2 centimeters at the bottom of a cylindrical tank of radius 20 centimeters. In these equations, Δ m is the mass that leaves the tank in time Δt, v is the velocity of the water flowing through the hole, and h is the height of the water in the tank at time t. g is the accelertion of gravity,...
Revisiting the ballistic pendulum. In lab we used both conservation of momentum and conservation of energy...
Revisiting the ballistic pendulum. In lab we used both conservation of momentum and conservation of energy to relate the launch speed of a projectile to the maximum height of the swing of a pendulum. Here we will study the parts of this problem in a bit more detail. (a) Briefly explain why momentum is conserved during the collision of the projectile and the pendulum, but mechanical energy is not conserved. (b) Briefly explain why mechanical energy (kinetic plus potential energy)...
1. First consider a mass on an inclined slope of angle θ, and assume the motion...
1. First consider a mass on an inclined slope of angle θ, and assume the motion is frictionless. Sketch this arrangement: 2. As the mass travels down the slope it travels a distance x parallel to the slope. The change in height of the mass is therefore xsinθ. By conserving energy, equate the change of gravitational potential energy, mgh = mgxsinθ, to the kinetic energy for the mass as it goes down the slope. Then rearrange this to find an...
Learning Goal: To understand how to apply the law of conservation of energy to situations with...
Learning Goal: To understand how to apply the law of conservation of energy to situations with and without nonconservative forces acting. The law of conservation of energy states the following: In an isolated system the total energy remains constant. If the objects within the system interact through gravitational and elastic forces only, then the total mechanical energy is conserved. The mechanical energy of a system is defined as the sum of kinetic energy K and potential energy U. For such...
Q1.Energy is defined as the ability to do work. the conservation of displacement. the distance traveled...
Q1.Energy is defined as the ability to do work. the conservation of displacement. the distance traveled divided by time. the time rate of doing work. Q2.While rearranging a dorm room, a student does 300 J of work in moving a desk 2.0 m. What was the magnitude of the applied horizontal force? 150 N 600 N 0 N 2940 N Q3.Power is force divided by time. is work divided by time. is work times time. has the same units as...
Finding the Spring Constant We can describe an oscillating mass in terms of its position, velocity,...
Finding the Spring Constant We can describe an oscillating mass in terms of its position, velocity, and acceleration as a function of time. We can also describe the system from an energy perspective. In this experiment, you will measure the position and velocity as a function of time for an oscillating mass and spring system, and from those data, plot the kinetic and potential energies of the system. Energy is present in three forms for the mass and spring system....
this is a thermodynamics class 4. We want to develop an intuition for what different amounts...
this is a thermodynamics class 4. We want to develop an intuition for what different amounts of energy look like in various forms. Calculate the energy in MegaJoules (MJ) present in the following systems. As a comment, many people will be surprised by some of the values, for example, a comparison of part e to parts a through c. a) 1 liter (approximately 1 quart) of octane, a primary component of gasoline. In this case, the chemical energy is released...
8 through 10 done please!! 3.13.6 Question 110 pts A 319 kg motorcycle is parked in...
8 through 10 done please!! 3.13.6 Question 110 pts A 319 kg motorcycle is parked in a parking garage. If the car has 35,494 J of potential energy, how many meters above ground is the car? Report your answer to 1 decimal place. Please do not include units or the answer will be marked incorrect. Flag this Question Question 210 pts A box sitting on the top of a hill has 252 J of potential energy. If the hill is...
just do questions 5 through 10 3.13.6 Question 110 pts A 319 kg motorcycle is parked...
just do questions 5 through 10 3.13.6 Question 110 pts A 319 kg motorcycle is parked in a parking garage. If the car has 35,494 J of potential energy, how many meters above ground is the car? Report your answer to 1 decimal place. Please do not include units or the answer will be marked incorrect. Flag this Question Question 210 pts A box sitting on the top of a hill has 252 J of potential energy. If the hill...