Question

A block of mass m = 0.79 kg is attached to a spring with force constant 123.0 N/m. The block is free to move on a frictionless, horizontal surface as shown in the figure. The block is released from rest after the spring is stretched a distance A = 0.10 m to the right. What is the potential energy of the spring/block system 0.25 s after releasing the block?

Answer #1

Please upvote if you have understood the solution. Thank you.

A block of mass m = 0.53 kg attached to a spring with force
constant 119 N/m is free to move on a frictionless, horizontal
surface as in the figure below. The block is released from rest
after the spring is stretched a distance A = 0.13 m. (Indicate the
direction with the sign of your answer. Assume that the positive
direction is to the right.)
The left end of a horizontal spring is attached to a vertical
wall, and...

A block of mass m = 4.5 kg is attached to a spring with
spring constant k = 610 N/m. It is initially at rest on an
inclined plane that is at an angle of θ = 29° with respect
to the horizontal, and the coefficient of kinetic friction between
the block and the plane is μk = 0.13. In the
initial position, where the spring is compressed by a distance of
d = 0.19 m, the mass is at...

A block with mass m = 7.4 kg is attached to two springs with
spring constants kleft = 31 N/m and kright = 53 N/m. The block is
pulled a distance x = 0.27 m to the left of its equilibrium
position and released from rest.
7)
Where is the block located, relative to equilibrium, at a time
1.06 s after it is released? (if the block is left of equilibrium
give the answer as a negative value; if the...

A student places a 1.200 kg block next to a spring of spring
constant k=4960N/m. The system rests is on a frictionless
horizontal surface (see figure). The horizontal surface at the top
of a building. The distance from the horizontal surface to the
ground below is 7.00m. The student pushes the block against the
spring until it is compressed a distance 0.100m. The block is then
released so that is slides off the edge of the building. Final
answers must...

A block with mass m = 4.2 kg is attached to two springs with
spring constants kleft = 34 N/m and kright =
57 N/m. The block is pulled a distance x = 0.22 m to the left of
its equilibrium position and released from rest.
What is the magnitude of the net force on the block (the moment
it is released)?
What is the effective spring constant of the two springs?
N/m
What is the period of oscillation of...

A block with mass m = 6.3 kg is attached to two springs
with spring constants kleft = 32 N/m and
kright = 51 N/m. The block is pulled a distance x = 0.22
m to the left of its equilibrium position and released from
rest.
1. Where is the block located, relative to equilibrium, at a
time 1.07 s after it is released? (if the block is left of
equilibrium give the answer as a negative value; if the...

A block with mass m = 4.6 kg is attached to two springs with
spring constants kleft = 37 N/m and kright = 51 N/m. The block is
pulled a distance x = 0.27 m to the left of its equilibrium
position and released from rest.
What is the magnitude of the net force on the block (the moment
it is released)?
What is the effective spring constant of the two springs?
What is the period of oscillation of the...

a) A block with a mass of 0.600 kg is connected to a spring,
displaced in the positive direction a distance of 50.0 cm from
equilibrium, and released from rest at t = 0. The block then
oscillates without friction on a horizontal surface. After being
released, the first time the block is a distance of 15.0 cm from
equilibrium is at t = 0.200 s.
What is the block's period of oscillation?
_______ s
b) A block with a...

A block with mass m = 4.9 kg is attached to two springs with
spring constants kleft = 30 N/m and kright =
55 N/m. The block is pulled a distance x = 0.22 m to the left of
its equilibrium position and released from rest.
1)
What is the magnitude of the net force on the block (the moment
it is released)?
2)
What is the effective spring constant of the two springs?
3)
What is the period of...

A block with mass m = 4.3 kg is attached to two springs with
spring constants klef t = 35 N/m and kright = 48 N/m. The block is
pulled a distance x = 0.23 m to the left of its equilibrium
position and released from rest. (a) What is the magnitude of the
net force on the block at the moment it is released? (2pt) (b) What
is the period of oscillation of the block? (1pt) (c) How long...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 1 minute ago

asked 1 minute ago

asked 1 minute ago

asked 9 minutes ago

asked 9 minutes ago

asked 9 minutes ago

asked 12 minutes ago

asked 12 minutes ago

asked 13 minutes ago

asked 13 minutes ago

asked 13 minutes ago

asked 13 minutes ago