Question

A 17.7 kg disk with a radius of 0.20 m is released from rest at the...

A 17.7 kg disk with a radius of 0.20 m is released from rest at the top of a 3.2 m tall ramp. What is the (translational) speed of the object when it reaches the end of the ramp? Report your answer in meters per second, rounded to one decimal place

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 10.9 kg disk with a radius of 0.14 m is released from rest at the...
A 10.9 kg disk with a radius of 0.14 m is released from rest at the top of a 2.7 m tall ramp. What is the (translational) speed of the object when it reaches the end of the ramp? Report your answer in meters per second, rounded to one decimal place Consider the following situation: A 0.7 kg box is released from rest at the top of a 1.35 m tall ramp. The ramp is smooth, and friction may be...
A 2.8 kg solid cylinder (radius = 0.20 m , length = 0.50 m ) is...
A 2.8 kg solid cylinder (radius = 0.20 m , length = 0.50 m ) is released from rest at the top of a ramp and allowed to roll without slipping. The ramp is 0.80 m high and 5.0 m long. A) When the cylinder reaches the bottom of the ramp, what is its total kinetic energy? B) When the cylinder reaches the bottom of the ramp, what is its rotational kinetic energy? C) When the cylinder reaches the bottom...
A 2.9 kg solid sphere (radius = 0.15 m) is released from rest at the top...
A 2.9 kg solid sphere (radius = 0.15 m) is released from rest at the top of a ramp and allowed to roll without slipping. The ramp is 0.85 m high and 5.2 m long. 1. When the sphere reaches the bottom of the ramp, what are its total kinetic energy, 2. When the sphere reaches the bottom of the ramp, what is its rotational kinetic energy? 3. When the sphere reaches the bottom of the ramp, what is its...
A solid, uniform disk of radius 0.250 m and mass 54.1 kg rolls down a ramp...
A solid, uniform disk of radius 0.250 m and mass 54.1 kg rolls down a ramp of length 3.80 m that makes an angle of 12.0° with the horizontal. The disk starts from rest from the top of the ramp. (a) Find the speed of the disk's center of mass when it reaches the bottom of the ramp. ___________m/s (b) Find the angular speed of the disk at the bottom of the ramp. ___________rad/s
A hoop and a disk, both of 0.88- m radius and 4.0- kg mass, are released...
A hoop and a disk, both of 0.88- m radius and 4.0- kg mass, are released from the top of an inclined plane 3.3 m high and 8.1 m long. What is the speed of each when it reaches the bottom? Assume that they both roll without slipping. What is the speed of the hoop? What is the speed of the disk?
A hoop and a disk, both of 0.50- m radius and 4.0- kg mass, are released...
A hoop and a disk, both of 0.50- m radius and 4.0- kg mass, are released from the top of an inclined plane 2.9 m high and 8.7 m long. What is the speed of each when it reaches the bottom? Assume that they both roll without slipping. What is the speed of the hoop? What is the speed of the disk?
An object with a mass m = 3.5 kg is released from rest at the top...
An object with a mass m = 3.5 kg is released from rest at the top of the ramp. The length of the ramp is 4 m. The object slides down the ramp reaching a speed of 1.8 m/s at the bottom. (a) How much time (in sec) does it take the object to reach the bottom of the ramp? (use kinematics equations) (b) What is the acceleration of the object (in m/s2 )? (use kinematics equations) (c) If the...
A bus contains a 2,353 kg flywheel (a disk that has a 1.9 m radius) and...
A bus contains a 2,353 kg flywheel (a disk that has a 1.9 m radius) and has a total mass of 10,641 kg. Assume 90.0% of the rotational kinetic energy of the flywheel can be transformed into translational energy of the bus. what is the angular velocity in unit of round per minute the flywheel must have to contain enough energy to take the bus from rest to climb a hill of height 16.7 meters and still have a speed...
A 55.8 kg person skis down a 10 m tall hill. They start from rest at...
A 55.8 kg person skis down a 10 m tall hill. They start from rest at the top of the hill, but friction and air resistance both affect the skiers motion. If friction and air resistance have the effect of dissipating 1,027 J of energy away from the skier over the entire length of the hill, how fast are they traveling when they reach the bottom? Report your answer in meters per second, rounded to one decimal place
A solid sphere of mass 4.0 kg and radius 0.12 m starts from rest at the...
A solid sphere of mass 4.0 kg and radius 0.12 m starts from rest at the top of a ramp inclined 15 degrees and rolls to the bottom. The upper end of the ramp is 2.0 m higher than the lower end. What is the linear velocity when it reaches the bottom of the ramp? A. 4.7 m/s B. 4.1 m/s C. 3.4 m/s D. 5.3 m/s E. 1.8 m/s