Question

A thin rod has a length of 0.380 m and rotates in a circle on a...

A thin rod has a length of 0.380 m and rotates in a circle on a frictionless tabletop. The axis is perpendicular to the length of the rod at one of its ends. The rod has an angular velocity of 0.428 rad/s and a moment of inertia of 1.31 x 10 −3 kg·m 2 . A bug standing on the axis decides to crawl out to the other end of the rod. When the bug (whose mass is 5.00 x 10 −3 kg) gets where it's going, what is the change in the angular velocity of the rod? ANswer to 3 significant figures.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A thin rod has a length of 0.380 m and rotates in a circle on a...
A thin rod has a length of 0.380 m and rotates in a circle on a frictionless tabletop. The axis is perpendicular to the length of the rod at one of its ends. The rod has an angular velocity of 0.428 rad/s and a moment of inertia of 1.31 x 10 −3 kg·m 2 . A bug standing on the axis decides to crawl out to the other end of the rod. When the bug (whose mass is 5.00 x...
Interactive Solution 9.63 illustrates one way of solving a problem similar to this one. A thin...
Interactive Solution 9.63 illustrates one way of solving a problem similar to this one. A thin rod has a length of 0.594 m and rotates in a circle on a frictionless tabletop. The axis is perpendicular to the length of the rod at one of its ends. The rod has an angular velocity of 0.673 rad/s and a moment of inertia of 1.37 x 10-3 kg·m2. A bug standing on the axis decides to crawl out to the other end...
A thin uniform rod has a length of 0.490 m and is rotating in a circle...
A thin uniform rod has a length of 0.490 m and is rotating in a circle on a frictionless table. The axis of rotation is perpendicular to the length of the rod at one end and is stationary. The rod has an angular velocity of 0.37 rad/s and a moment of inertia about the axis of 3.50×10−3 kg⋅m2 . A bug initially standing on the rod at the axis of rotation decides to crawl out to the other end of...
A thin uniform rod has a length of 0.430 m and is rotating in a circle...
A thin uniform rod has a length of 0.430 m and is rotating in a circle on a frictionless table. The axis of rotation is perpendicular to the length of the rod at one end and is stationary. The rod has an angular velocity of 0.32 rad/s and a moment of inertia about the axis of 3.20×10−3 kg⋅m2 . A bug initially standing on the rod at the axis of rotation decides to crawl out to the other end of...
A long, uniform rod of length  0.510 mm and is rotating in a circle on a frictionless...
A long, uniform rod of length  0.510 mm and is rotating in a circle on a frictionless table. The axis of rotation is perpendicular to the length of the rod at one end and is stationary. The rod has an angular velocity of 0.4 rad/srad/s and a moment of inertia about the axis of 2.70×10−3 kg⋅m2kg⋅m2 . An insect initially standing on the rod at the axis of rotation decides to walk to the other end of the rod. When the...
A thin, rigid, uniform rod has a mass of 1.40 kg and a length of 2.50...
A thin, rigid, uniform rod has a mass of 1.40 kg and a length of 2.50 m. (a) Find the moment of inertia of the rod relative to an axis that is perpendicular to the rod at one end. (b) Suppose all the mass of the rod were located at a single point. Determine the perpendicular distance of this point from the axis in part (a), such that this point particle has the same moment of inertia as the rod...
A rod of length 10 m rotates about an axis perpendicular to its length and through...
A rod of length 10 m rotates about an axis perpendicular to its length and through its center. Two particles of masses m1 = 4.0 kg and m2 = 3.0 kg are connected to the ends of the rod. What is the angular momentum of the system if the speed of each particle is 2.5 m/s?
A rod of length 10 m rotates about an axis perpendicular to its length and through...
A rod of length 10 m rotates about an axis perpendicular to its length and through its center. Two particles of masses m1 = 4.0 kg and m2 = 3.0 kg are connected to the ends of the rod. What is the angular momentum of the system if the speed of each particle is 2.5 m/s?
A thin, uniform rod is bent into a square of side length a. If the total...
A thin, uniform rod is bent into a square of side length a. If the total mass of the rod is M, find the moment of inertia about an axis through the center and perpendicular to the plane formed by the interior of the square. Thanks!
Calculate the moment of inertia of a thin rod rotating about an axis through its center...
Calculate the moment of inertia of a thin rod rotating about an axis through its center perpendicular to its long dimension. Do the same for rotation about an axis through one of the ends (perpendicular to the length again). Does this confirm the parallel axis theorem? Remember ?? = ? ??C????.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT