Question

A 5.0 kg block with a speed of 3.0 m/s collides with a 10 kg block...

A 5.0 kg block with a speed of 3.0 m/s collides with a 10 kg block that has a speed of 2.2 m/s in the same direction. After the collision, the 10 kg block is observed to be traveling in the original direction with a speed of 2.7 m/s.


(b) By how much does the total kinetic energy of the system of two blocks change because of the collision?

________ J

(c) Suppose, instead, that the 10 kg block ends up with a speed of 4.2 m/s. What then is the change in the total kinetic energy?
___________ J

(d) Account for the result you obtained in (c).

Homework Answers

Answer #1

Please let me know if it was helpful. Thank you!

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 7.0 kg block with a speed of 3.0 m/s collides with a 14.0 kg block...
A 7.0 kg block with a speed of 3.0 m/s collides with a 14.0 kg block that has a speed of 2.0 m/s in the same direction. After the collision, the 14.0 kg block is observed to be traveling in the original direction with a speed of 2.5 m/s. (a) What is the velocity of the 7.0 kg block immediately after the collision? (b) By how much does the total kinetic energy of the system of two blocks change because...
A 6.9 kg block with a speed of 3.6 m/s collides with a 13.8 kg block...
A 6.9 kg block with a speed of 3.6 m/s collides with a 13.8 kg block that has a speed of 2.4 m/s in the same direction. After the collision, the 13.8 kg block is observed to be traveling in the original direction with a speed of 3.0 m/s. (a) What is the velocity of the 6.9 kg block immediately after the collision? (b) By how much does the total kinetic energy of the system of two blocks change because...
A 2.0 kg block with a speed of 5.1 m/s collides with a 4.0 kg block...
A 2.0 kg block with a speed of 5.1 m/s collides with a 4.0 kg block that has a speed of 3.4 m/s in the same direction. After the collision, the 4.0 kg block is observed to be traveling in the original direction with a speed of 4.3 m/s. (a) What is the velocity of the 2.0 kg block immediately after the collision? (b) By how much does the total kinetic energy of the system of two blocks change because...
A 5 kg block with a speed of 3.0 m/s collides with a 10 kg block...
A 5 kg block with a speed of 3.0 m/s collides with a 10 kg block that has a speed of 2.0 m/s in the same direction. After the collision, the 10 kg block travels in the original direction with a speed of 2.5 m/s. (a) Draw (i) a before/after sketch, (ii) momentum & energy bar diagrams of the situation, and (iii) identify the collision as elastic, inelastic and completely inelastic. (b) what is the velocity of the 5.0 kg...
2.00-kg block A traveling east at 20.0 m/s collides with 3.00-kg block B traveling west at...
2.00-kg block A traveling east at 20.0 m/s collides with 3.00-kg block B traveling west at 10.0 m/s. After the collision, block A has a velocity of 5.00 m/s due west. (a) How much kinetic energy was lost during the collision? (b) If the blocks were in contact for 75 ms, determine the magnitude and direction of average force exerted on block A.
A 5.0-kg mass moving at 8.0 m/s collides head-on with a 3.0-kg mass initially at rest...
A 5.0-kg mass moving at 8.0 m/s collides head-on with a 3.0-kg mass initially at rest If the collision is perfectly elastic, what is the speed of the masses just after the collision? Is the kinetic energy conserved?
A) A block of mass m1=6.0 kg is initially moving at 5.0 m/s to the right...
A) A block of mass m1=6.0 kg is initially moving at 5.0 m/s to the right and collides inelastically with an initially stationary block of mass m2=18.0 kg. The two objects become stuck together. Find the final velocity of the two blocks. B) A block of mass m1=6.0 kg is initially moving at 5.0 m/s to the right and collides elastically with an initially stationary block of mass m2=18.0 kg. After the collision, block m2 is moving to the right...
A 6.0-kg block moving at 9.0 m/s to the right collides head-on with another 12.0-kg block...
A 6.0-kg block moving at 9.0 m/s to the right collides head-on with another 12.0-kg block moving at 3.0 m/s to the left. What are the velocities of the two blocks after the collision if the collision is elastic?
A 2.0 kg object moving 5.0 m/s collides with and sticks to an 8.0 kg object...
A 2.0 kg object moving 5.0 m/s collides with and sticks to an 8.0 kg object initially at rest. a). Calculate the total momentum of the system before the collision. b). Calculate the total kinetic energy of the system before the collision. c). Calculate the kinetic energy lost by the system as a result of this collision.
A 5.0 kg bowling ball traveling 3.0 m/s collides with an 8.0 kg stationary bowling ball....
A 5.0 kg bowling ball traveling 3.0 m/s collides with an 8.0 kg stationary bowling ball. After the collision the 5.0 kg ball is deflected to the left from its original path by 30 degrees, while the 8.0 kg ball is deflected to the right at an angle of 45 degrees. What are the speeds of the two balls after the impact?