Question

A body m1= 10kg is travelling 5m/s . It is hit head on body m2=20kg moving...

A body m1= 10kg is travelling 5m/s . It is hit head on body m2=20kg moving with a speed of 10m/s in the opposite direction. Assuming an elastic collision, what is the final velocity of each body? What is the total Ek?

Homework Answers

Answer #1

To solve this problem we will be using the basic idea of Conservation of Momentum and Kinetic Energy.

Therefore the final velocity of the first and second body is -15m/s and 0 m/s respectively.

The Kinetic Energy of the body is  1125 J

hope you find this useful

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A block  (m1=2kg) , initially moving at 15m/s in the x-direction, hits another block (m2=5kg) , initially...
A block  (m1=2kg) , initially moving at 15m/s in the x-direction, hits another block (m2=5kg) , initially at rest. After the collision  m1 moves with a speed of 10m/s at an angle of  87.59? with respect to the original line of motion. Assume a perfectly elastic collision. Determine the final speed of m2 . Determine the magnitude of the direction of m2 .
A 0.060-kg tennis ball, moving with a speed of 5.40m/s , has a head-on collision with...
A 0.060-kg tennis ball, moving with a speed of 5.40m/s , has a head-on collision with a 0.090-kg ball initially moving in the same direction at a speed of 3.38m/s . Assume that the collision is perfectly elastic. Part A Determine the speed of the 0.060-kg ball after the collision. Part B Determine the direction of the velocity of the 0.060- ball after the collision. in the direction of the initial velocity in the direction opposite to the initial velocity...
A 0.060 kg tennis ball, moving with a speed of 7.10 m/s has a head-on collision...
A 0.060 kg tennis ball, moving with a speed of 7.10 m/s has a head-on collision with a 0.080 kg ball initially moving away from it in the same direction at a speed of 3.40 m/s. Assuming a perfectly elastic collision, What is the velocity of the tennis ball after the collision? (Take the initial direction of the balls as positive.) m/s What is the velocity of the 0.080 kg ball after the collision? m/s
-A 11.0g object moving to the right at 18.6 cm/s makes an elastic head-on collision with...
-A 11.0g object moving to the right at 18.6 cm/s makes an elastic head-on collision with a 17.9g object moving in the opposite direction at 29.2 cm/s. What is the velocity of the 11.0g object after the collision (assume positive to the right)? - What is the velocity of the 17.9g object after the collision?
A 10.0 g object moving to the right at 17.0 cm/s makes an elastic head-on collision...
A 10.0 g object moving to the right at 17.0 cm/s makes an elastic head-on collision with a 15.0 g object moving in the opposite direction at 35.0 cm/s. Find the velocity of each object after the collision. 10g object 15g object
A .060kg tennis ball, moving with a speed of 4.5m/s has a head-on collision with a...
A .060kg tennis ball, moving with a speed of 4.5m/s has a head-on collision with a .090kg clay ball initially moving in the same direction at a speed of 3.9 m/s. Assuming perfect elastic collision, determine the speed and direction of the tennis ball
A 0.060-kg tennis ball, moving with a speed of 5.6 m/s , has a head-on collision...
A 0.060-kg tennis ball, moving with a speed of 5.6 m/s , has a head-on collision with a 0.10-kg ball initially moving in the same direction at a speed of 3.4 m/s . Assuming a perfectly elastic collision, determine the speed of each ball after the collision.
While stuck at a railroad crossing, you notice a full train car (m1 = 9000kg) is...
While stuck at a railroad crossing, you notice a full train car (m1 = 9000kg) is moving to your left with a speed of 9m/s. Two seperated empty train cars (m2 & m3 = 3000kg each) are on the same track moving to the right, each with a speed of 3m/s. There are two succesive collisions. First m1 and m2 hit and stick together. That pair (m1 & m2) then runs into m3. In this second collision, the air bag...
A) A block of mass m1=6.0 kg is initially moving at 5.0 m/s to the right...
A) A block of mass m1=6.0 kg is initially moving at 5.0 m/s to the right and collides inelastically with an initially stationary block of mass m2=18.0 kg. The two objects become stuck together. Find the final velocity of the two blocks. B) A block of mass m1=6.0 kg is initially moving at 5.0 m/s to the right and collides elastically with an initially stationary block of mass m2=18.0 kg. After the collision, block m2 is moving to the right...
A car of mass m1 = 2000.0 kg is moving at speed v1i = 20.0m/s towards...
A car of mass m1 = 2000.0 kg is moving at speed v1i = 20.0m/s towards East. A truck of mass m2 = 5000.0 kg is moving at speed v2i = 10.0m/s towards North. They collide at an intersection and get entangled (complete inelastic collision). 1. What is the magnitude and direction of the final velocity of the entangled automobiles? 2. How much kinetic energy is lost in the collision. That is, calculate the change in the kinetic energy of...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT