Question

2. Plate Charge changes with separation of the plates. a) directly b) no change c) randomly...

2. Plate Charge changes with separation of the plates.

a) directly

b) no change

c) randomly

8. Stored Energy changes with separation of the plates.

a) inversely as the plate separation  

b) directly

c) no change

d) inversely as the square of the plate separation

10. Plate Charge changes with Area of the plates.

a) no change

b) randomly

c) directly

d) inversely

d) inversely

Please provide an explanation.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Stored energy changes with separation. a) directly b) no change c) inversely as the square...
1. Stored energy changes with separation. a) directly b) no change c) inversely as the square of the plate separation d) inversely as the plate separation 2. Plate charge changes with the voltage of the battery. a) randomly b) directly c) inversely d) no change 3. Plate charge changes with the area of the plates. a) directly b) randomly c) inversely d) no change 4. Plate charge changes with the separation of the plates. a) directly b) no change c)...
1. Explain why Voltage is: Inversely related to capacitance, Directly related to plate charge and directly...
1. Explain why Voltage is: Inversely related to capacitance, Directly related to plate charge and directly related to stored energy. 2. Explain why plate area is: Directly related to capacitance, Directly related to plate charge and directly related to stored energy. 3 Explain why electric field strength is: Not related to plate area, and why it’s Inversely related to separation distance
A parallel-plate capacitor is charged and then disconnected from a battery. Then, the plate separation is...
A parallel-plate capacitor is charged and then disconnected from a battery. Then, the plate separation is decreased by a factor of 4, d_new=1/4 d_old, please type in a number into the box to determine how everything changes. (If something doesn't change, please type in 1 to answer X_new= 1 X_old.) (a) By what fraction does the capacitance change? C_new=  C_old; (b) By what fraction does the amount of charge change? Q_new=  Q_old (When the battery is disconnected, the charges have no place...
The potential across the plates of a parallel-plate capacitor is 100 Volts and the separation between...
The potential across the plates of a parallel-plate capacitor is 100 Volts and the separation between the plates is 0.02 m. The charge on the plates are +50 nC and -50 nC, respectively. How much energy is needed to slowly pull the plates apart so that the distance between the plates is now 0.06 m? Assume that the area of the plates and the charge on each plate do not change.
A water-filled parallel plate capacitor has a plate area of 2.2 cm2 and plate separation of...
A water-filled parallel plate capacitor has a plate area of 2.2 cm2 and plate separation of 2.5 mm. The potential difference between its plates is held at 7.0 V. Calculate the magnitude of the electric field between its plates, the charge stored on each plate, and the charge stored on each plate after water is replaced by air. (a) the magnitude of the electric field between its plates -------------V/m (b) the charge stored on each plate ----------- nC (c) the...
A water-filled parallel plate capacitor has a plate area of 2.2 cm2 and plate separation of...
A water-filled parallel plate capacitor has a plate area of 2.2 cm2 and plate separation of 2.5 mm. The potential difference between its plates is held at 7.0 V. Calculate the magnitude of the electric field between its plates, the charge stored on each plate, and the charge stored on each plate after water is replaced by air. (a) the magnitude of the electric field between its plates -------------V/m (b) the charge stored on each plate ----------- nC (c) the...
1)A parallel plate capacitor (denoted as Capacitor 1) has a plate area A1 and a separation...
1)A parallel plate capacitor (denoted as Capacitor 1) has a plate area A1 and a separation distance d1. It is filled with a dielectric made of mylar (κ=3.1). With these conditions, it has a capacitance C1. A second parallel plate capacitor (denoted as Capacitor 2) has the same plate area as the first capacitor (A1 = A2) but the separation distance is twice as large (d1 = ½ d2). The second capacitor is filled with the same dielectric (mylar) and...
8) An ideal parallel-plate capacitor consists of a set of two parallel plates of area A...
8) An ideal parallel-plate capacitor consists of a set of two parallel plates of area A separated by a very small distance d. When this capacitor is connected to a battery that maintains a constant potential difference between the plates, the energy stored in the capacitor is U0. If the separation between the plates is doubled, how much energy is stored in the capacitor? 8) A) U0 B) 2U0 C) U0/4 D) U0/2 E) 4U0 9) An ideal parallel-plate capacitor...
A parallel plate capacitor of capacitance Co has plates of area A with separation d between...
A parallel plate capacitor of capacitance Co has plates of area A with separation d between them. When it is connected to a battery of voltage Vo, it has charge of magnitude Qo on its plates. It is then disconnected from the battery and the plates are pulled apart to a separation 2d without discharging them. After the plates are 2d apart, by what factor does the magnitude of the charge on the plates change? By what factor does the...
The parallel plates in a capacitor, with a plate area of 6.80 cm2 and an air-filled...
The parallel plates in a capacitor, with a plate area of 6.80 cm2 and an air-filled separation of 2.90 mm, are charged by a 5.90 V battery. They are then disconnected from the battery and pulled apart (without discharge) to a separation of 8.90 mm. Neglecting fringing, find (a) the potential difference between the plates, (b) the initial stored energy, (c) the final stored energy, and (d) the work required to separate the plates.