Question

1.Two diverging lenses are placed 1.10 m apart. The left lens has a focal length of...

1.Two diverging lenses are placed 1.10 m apart. The left lens has a focal length of -0.550 m and the right lens has a focal length of -1.20 m. An object is place 0.250 m to the left of the left lens.

i) Where is the image formed by the left lens located? A) 17 cm to the left of left lens B) 93 cm to the left of right lens C) 12 cm to the left of right lens D) 46 cm to the left of left lens E) 64 cm to the left of right lens ii) What is the magnification of left lens? ( 5 marks) A) 1.84 B) 1.0 C) – 0.68 D) – 1.84 E) 0.68

iii) Where is the final image formed by these two lenses located? A)10 cm to the right of the left lens B)48 cm to the right of the left lens. C)58 cm to the right of the left lens. D)62 cm to the right of the left lens. E)95 cm to the right of the left lens.

2 iv) What is the total magnification of both lenses combined? (5marks) A) 0.49 B) – 0.68 C) 0.9 D) 0.33 E) – 0.49

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two lenses are placed along the x axis, with a diverging lens of focal length −8.70...
Two lenses are placed along the x axis, with a diverging lens of focal length −8.70 cm on the left and a converging lens of focal length 17.0 cm on the right. When an object is placed 14.0 cm to the left of the diverging lens, what should the separation s of the two lenses be if the final image is to be focused at x = ∞?
Two lenses are placed along the x axis, with a diverging lens of focal length −7.40...
Two lenses are placed along the x axis, with a diverging lens of focal length −7.40 cm on the left and a converging lens of focal length 15.0 cm on the right. When an object is placed 14.0 cm to the left of the diverging lens, what should the separation s of the two lenses be if the final image is to be focused at x = ∞?
An object is placed 4949 cm to the left of a converging lens of focal length...
An object is placed 4949 cm to the left of a converging lens of focal length 1717 cm. A diverging lens of focal length −20−20 cm is located 1717 cm to the right of the first lens. (Consider the lenses as thin lenses). a) Where is the final image with respect to the second lens?
Two converging lenses are placed 40.0 cm apart. The focal length of the lens on the...
Two converging lenses are placed 40.0 cm apart. The focal length of the lens on the right is 21.0 cm , and the focal length of the lens on the left is 10.5 cm . An object is placed to the left of the 10.5 cm focal-length lens. A final image from both lenses is inverted and located halfway between the two lenses. How far to the left of the 10.5 cmcm focal-length lens is the original object?
Two lenses are placed 50 cm apart. The first lens is converging and has a focal...
Two lenses are placed 50 cm apart. The first lens is converging and has a focal length of 20 cm, and the second lens is diverging and has a focal length of 15 cm. If an object is placed 55 cm in front of the first lens, where is the final image located? Give your answer in relation to the second lens. What is the overall magnification? Is the final image upright or inverted? Is the final image real or...
Two identical diverging lenses are separated by 22 cm. The focal length of each lens is...
Two identical diverging lenses are separated by 22 cm. The focal length of each lens is -13 cm. An object is located 4.4 cm to the left of the lens that is on the left. Determine the final image distance relative to the lens on the right.
Two identical diverging lenses are separated by 14 cm. The focal length of each lens is...
Two identical diverging lenses are separated by 14 cm. The focal length of each lens is -9.5 cm. An object is located 3.9 cm to the left of the lens that is on the left. Determine the final image distance relative to the lens on the right
Two identical diverging lenses are separated by 20 cm. The focal length of each lens is...
Two identical diverging lenses are separated by 20 cm. The focal length of each lens is -9.8 cm. An object is located 4.7 cm to the left of the lens that is on the left. Determine the final image distance relative to the lens on the right.
Two identical diverging lenses are separated by 17 cm. The focal length of each lens is...
Two identical diverging lenses are separated by 17 cm. The focal length of each lens is -7.9 cm. An object is located 3.3 cm to the left of the lens that is on the left. Determine the final image distance relative to the lens on the right.
Two thin lenses with a focal length of magnitude 12.0 cm, the first diverging and second...
Two thin lenses with a focal length of magnitude 12.0 cm, the first diverging and second converging, are located 9.00cm apart. An object 2.50mm tall is placed 20.0cm to the left of the first (diverging) lens. Note that focal length of diverging lens is a negative number while focal length of converging lens would be positive. a) Draw a figure showing both lenses and use principal rays to find approximate position of the image formed by the first lens. b)...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT