Question

7. Ball A with mass 0.85 kg is rolling at 3.5 m/s [N] when it collides...

7. Ball A with mass 0.85 kg is rolling at 3.5 m/s [N] when it collides with stationary Ball B with mass 1.15 kg. After the collision, Ball A is moving 2.4 m/s [N40ºW]. Find the velocity of Ball B after the collision.  

Homework Answers

Answer #1

see the diagram :

given :

u = 3.5 m/s

mA = 0.85 kg

mB = 1.15 kg

v1 = 2.4 m/s

v2 = ?

suppose the shown direction in before collision is taken along +y -axis, then towards right perpendicular to y is +x-axis.

before collision : the mometum of the system is

after collision : the momentum of the system is

Applying conservation of Linear momentum of system :

=> v2 = .

.

therefore, the body B is moving with 1.67 m/s [N43.06oE] [asnwer]

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A ball of mass 2 kg is moving with a velocity of 12 m/s collides with...
A ball of mass 2 kg is moving with a velocity of 12 m/s collides with a stationary ball of mass 6 kg and comes to rest. calculate the velocity of the 6 kg ball after the collision. (both balls are elastic)
A ball with a mass of 1.50 kg travelling +2.00 m/s collides with a stationary ball...
A ball with a mass of 1.50 kg travelling +2.00 m/s collides with a stationary ball with a mass of 1.00 kg. After the collision, the velocity of the 1.50 kg ball is +0.40 m/s. What is the velocity of the 1.00 kg ball after the collision? Select one: a. - 0.7 m/s b. + 3.6 m/s c. + 2.4 m/s d. + 1.8 m/s An 18 000 kg freight car travelling 1.75 m/s[E] collides with a 27 000 kg...
A ball of mass 0.265 kg that is moving with a speed of 5.1 m/s collides...
A ball of mass 0.265 kg that is moving with a speed of 5.1 m/s collides head-on and elastically with another ball initially at rest. Immediately after the collision, the incoming ball bounces backward with a speed of 3.5 m/s . Part A: Calculate the velocity of the target ball after the collision. Part B: Calculate the mass of the target ball.
A 2.0 kg bowling ball is rolling east at 1.5 m/s. It collides with a 1.0...
A 2.0 kg bowling ball is rolling east at 1.5 m/s. It collides with a 1.0 kg ball that is at rest. After the 'glancing' collision, the 2.0 kg ball is going [E30N] at 1.1 m/s. Determine the velocity of the 1.0 kg ball after the collision. What type of collision is this?
a 1.2 kg ball moving with a velocity of 8.0m/s collides head on with a stationary...
a 1.2 kg ball moving with a velocity of 8.0m/s collides head on with a stationary ball and bounces back at a velocity or 4.0 m/s. If the collision is perfectly elastic, calculate (a) the mass of the other ball (b) the velocity of the other ball after the collision (c) the momentum of each ball before and after the collision (d) the kinetic energy of each ball before and after the collision
A ball of mass 0.250 kg that is moving with a speed of 5.5 m/s collides...
A ball of mass 0.250 kg that is moving with a speed of 5.5 m/s collides head-on and elastically with another ball initially at rest. Immediately after the collision, the incoming ball bounces backward with a speed of 3.1 m/s . Calculate the velocity of the target ball after the collision. Calculate the mass of the target ball.
A ball of mass 0.310 kg that is moving with a speed of 5.7 m/s collides...
A ball of mass 0.310 kg that is moving with a speed of 5.7 m/s collides head-on and elastically with another ball initially at rest. Immediately after the collision, the incoming ball bounces backward with a speed of 3.1 m/s . 1. Calculate the velocity of the target ball after the collision. 2. Calculate the mass of the target ball.
A ball with mass M = 5 kg is moving with speed V=10 m/s and collides...
A ball with mass M = 5 kg is moving with speed V=10 m/s and collides with another ball with mass m = 2.5 kg which is initially stationary. There is no other force such as gravity acting on the two balls. After the collision, both balls move at angle θ=30 degrees relative to initial direction of motion of the ball with mass M = 5 kg. a) What are the speeds of the two balls after the collision? b)...
A ball of mass 0.484 kg moving east (+xdirection) with a speed of 3.76 m/s collides...
A ball of mass 0.484 kg moving east (+xdirection) with a speed of 3.76 m/s collides head-on with a 0.242 kg ball at rest. Assume that the collision is perfectly elastic.    A)What is be the speed of the 0.484-kg ball after the collision? B)What is be the direction of the velocity of the 0.484-kg ball after the collision? C)What is the speed of the 0.242-kg ball after the collision? D)What is the direction of the velocity of 0.242-kg ball after...
A 2.2 kg block moving at 3.5 m/s collides and sticks with a stationary block of...
A 2.2 kg block moving at 3.5 m/s collides and sticks with a stationary block of mass 4.5 kg. What is their combined speed immediately after the collision?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT