Question

A halfback with a mass m1 = 95 kg is running up field with a speed...

A halfback with a mass m1 = 95 kg is running up field with a speed of v1 = 7.6 m/s. He is tackled by an opponent with a mass m2 = 125 kg, who approaches the halfback at an angle β = 30°with a velocity v2 = 4.2 m/s. Assume the collision is perfectly inelastic.

  1. a) Calculate the magnitude and direction of the resultant velocity of the two players just after the tackle. (3 pts.)

  2. b) Calculate the change in kinetic energy KE for the system of the two players. (3 pts.)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 89.5-kg fullback running east with a speed of 5.05 m/s is tackled by a 95.5-kg...
A 89.5-kg fullback running east with a speed of 5.05 m/s is tackled by a 95.5-kg opponent running north with a speed of 3.10 m/s. (a) Explain why the successful tackle constitutes a perfectly inelastic collision. (b) Calculate the velocity of the players immediately after the tackle (I HAVE THE ANSWER TO B) magnitude: 2.91 ?direction: 33.25 m/s north of east (c) Determine the mechanical energy that disappears as a result of the collision. J Account for the missing energy....
A 85 kg fullback moving east with a speed of 6.0 m/s is tackled by a...
A 85 kg fullback moving east with a speed of 6.0 m/s is tackled by a 98 kg opponent running north at 2.0 m/s. (a) If the collision is perfectly inelastic, calculate the velocity of the players just after the tackle. m/s (b) If the collision is perfectly inelastic, calculate the kinetic energy lost as a result of the collision. J Can you account for the missing energy?
I ONLY NEED PART B ANSWERED A 77.0-kg fullback running east with a speed of 5.40...
I ONLY NEED PART B ANSWERED A 77.0-kg fullback running east with a speed of 5.40 m/s is tackled by a 79.0-kg opponent running north with a speed of 3.00 m/s. (a) Explain why the successful tackle constitutes a perfectly inelastic collision. ___________________ (b) Calculate the velocity of the players immediately after the tackle. magnitude=_____ m/s direction=______ ° north of east HINT: Find the total momentum of the two players before the collision and use conservation of momentum to find...
A 88 kg fullback moving east with a speed of 6.0 m/s is tackled by a...
A 88 kg fullback moving east with a speed of 6.0 m/s is tackled by a 100 kg opponent running north at 2.0 m/s. If the collision is perfectly inelastic, calculate each of the following. (a) the velocity of the players just after the tackle _____ m/s (b) the kinetic energy lost as a result of the collision _____J Can you account for the missing energy?
A man of mass m1 = 64.5 kg is skating at v1 = 7.60 m/s behind...
A man of mass m1 = 64.5 kg is skating at v1 = 7.60 m/s behind his wife of mass m2 = 53.0 kg, who is skating at v2 = 3.80 m/s. Instead of passing her, he inadvertently collides with her. He grabs her around the waist, and they maintain their balance. (a) Sketch the problem with before-and-after diagrams, representing the skaters as blocks. (b) Is the collision best described as elastic, inelastic, or perfectly inelastic? elastic inelastic perfectly inelastic...
A block of mass m1 = 1.20 kg moving at v1 = 1.20 m/s undergoes a...
A block of mass m1 = 1.20 kg moving at v1 = 1.20 m/s undergoes a completely inelastic collision with a stationary block of mass m2 = 0.500 kg . The blocks then move, stuck together, at speed v2. After a short time, the two-block system collides inelastically with a third block, of mass m3 = 2.60 kg , which is initially at rest. The three blocks then move, stuck together, with speed v3. Assume that the blocks slide without...
A particle of mass m1 = 1.32 kg with an initial velocity v1 = 4.56 m/s...
A particle of mass m1 = 1.32 kg with an initial velocity v1 = 4.56 m/s has a completely inelastic collision with a second particle of mass m2 = 3.68 kg with an initial velocity v2 = 3.06 m/s. What is the velocity of the combined particles immediately after the collision? (Express your answer in vector form.)
A block of mass m1 = 1.2 kg initially moving to the right with a speed...
A block of mass m1 = 1.2 kg initially moving to the right with a speed of 4.2 m/s on a frictionless, horizontal track collides with a spring attached to a second block of mass m2 = 2.8 kg initially moving to the left with a speed of 1.0 m/s as shown in figure (a). The spring constant is 535N/m. What if m1 is initially moving at 2.6 m/s while m2 is initially at rest?(a) Find the maximum spring compression...
1. A 50.5 kg quarterback is running with a football downfield at a speed of 2...
1. A 50.5 kg quarterback is running with a football downfield at a speed of 2 m/s and is tackled by another player with a mass of 70 kg running toward him at 4 m/s. When the tackler grabs the quarterback, they both fall backward at the same speed of 1 m/s (opposite to the original direction of the quarterback). In the process, the 0.5 kg football comes loose at the moment the collision takes place. a) Calculate the velocity...
A block of mass m1 = 2.6 kg initially moving to the right with a speed...
A block of mass m1 = 2.6 kg initially moving to the right with a speed of 4.5 m/s on a frictionless, horizontal track collides with a spring attached to a second block of mass m2 = 5.6 kg initially moving to the left with a speed of 2.9m/s. The spring constant is 504N/m. Now, What if m1 is initially moving at 3.4 m/s while m2 is initially at rest? (a) Find the maximum spring compression in this case. x...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT