Question

Initial Height of Spring Bottom (m): .123 Mass on Hanger (kg): 0.005 Height of Bottom (m):...

Initial Height of Spring Bottom (m): .123

Mass on Hanger (kg): 0.005

Height of Bottom (m): .115

Stretch Distance (m): ?????

Weight on Hanger (N):?????

Homework Answers

Answer #1

Stretch distance is the difference between initial height of the spring bottom and the height of the spring bottom after a mass is put on the hanger. So, the stretch distance is (.123 m - .115 m) which is equal to .008 m .

Weight is mass times the acceleration due to gravity i.e. for mass M kg the weight is

where .

For mass on hanger equal to 0.005 kg, the weight on hanger is .

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A horizontal spring-mass system has low friction, spring stiffness 200 N/m, and mass 0.5 kg. The...
A horizontal spring-mass system has low friction, spring stiffness 200 N/m, and mass 0.5 kg. The system is released with an initial compression of the spring of 9 cm and an initial speed of the mass of 3 m/s. (a) What is the maximum stretch during the motion? _ m (b) What is the maximum speed during the motion?   _m/s (c) Now suppose that there is energy dissipation of 0.02 J per cycle of the spring-mass system. What is the...
A 3.5 kg mass compresses a spring with spring constant 1680 N/m by a distance 0.95...
A 3.5 kg mass compresses a spring with spring constant 1680 N/m by a distance 0.95 m . The spring is released and launches the mass up a frictionless ramp onto a table of height 0.5 m . The table has a rough surface with coefficient of friction 0.15. After the mass has travelled 3.5 m on the table, what is the speed of the mass? Answer in m/s. GOOD HANDWRITING/TYPING PLEASE.
A block of mass m = 4.5 kg is attached to a spring with spring constant...
A block of mass m = 4.5 kg is attached to a spring with spring constant k = 610 N/m. It is initially at rest on an inclined plane that is at an angle of θ = 29° with respect to the horizontal, and the coefficient of kinetic friction between the block and the plane is μk = 0.13. In the initial position, where the spring is compressed by a distance of d = 0.19 m, the mass is at...
A block of mass m = 2.0 kg is dropped from height h = 40 cm...
A block of mass m = 2.0 kg is dropped from height h = 40 cm onto a spring of spring constant k = 1960 N/m (Fig.8-39 page 204).Find the maximum distance the spring is compressed.
A wooden block with mass 1.80 kg is placed against a compressed spring at the bottom...
A wooden block with mass 1.80 kg is placed against a compressed spring at the bottom of a slope inclined at an angle of 34.0 ? (point A). When the spring is released, it projects the block up the incline. At point B, a distance of 6.00 m up the incline from A, the block is moving up the incline at a speed of 6.45 m/s and is no longer in contact with the spring. The coefficient of kinetic friction...
A very large mass-spring system has stiffness 186 N/m, mass 0.33 kg, and is oriented horizontally...
A very large mass-spring system has stiffness 186 N/m, mass 0.33 kg, and is oriented horizontally atop a level table. The system released with initial compression of of 5 cm and initial speed 2 m/s. a What is the maximum stretch of the spring during the motion in m? b What is the maximum speed that the mass obtains in m/s? c If the friction force is on average Fu = 0.065 N, what is the change in energy per...
A wooden block with mass 1.30 kg is placed against a compressed spring at the bottom...
A wooden block with mass 1.30 kg is placed against a compressed spring at the bottom of a slope inclined at an angle of 35.0 ∘ (point A). When the spring is released, it projects the block up the incline. At point B, a distance of 7.95 m up the incline from A, the block is moving up the incline at a speed of 5.75 m/s and is no longer in contact with the spring. The coefficient of kinetic friction...
A block of mass 0.125 kg is hanging on a spring. Nora gently pulls the mass...
A block of mass 0.125 kg is hanging on a spring. Nora gently pulls the mass down a distance of 4.0 cm and then lets go. The mass bobs up and down in simple harmonic motion (i.e. it oscillates) with a period of 0.47 s. (a) What is the value of the spring constant? N/m Nora stops the mass from oscillating. She gently pulls the mass down again, this time to a distance of 5 cm, and lets the mass...
A block of mass m = 0.53 kg attached to a spring with force constant 119...
A block of mass m = 0.53 kg attached to a spring with force constant 119 N/m is free to move on a frictionless, horizontal surface as in the figure below. The block is released from rest after the spring is stretched a distance A = 0.13 m. (Indicate the direction with the sign of your answer. Assume that the positive direction is to the right.) The left end of a horizontal spring is attached to a vertical wall, and...
A wooden block with mass 1.65 kg is placed against a compressed spring at the bottom...
A wooden block with mass 1.65 kg is placed against a compressed spring at the bottom of a slope inclined at an angle of 31.0 ? (point A). When the spring is released, it projects the block up the incline. At point B, a distance of 4.10 m up the incline from A, the block is moving up the incline at a speed of 6.85 m/s and is no longer in contact with the spring. The coefficient of kinetic friction...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT