Question

Consider a person whose exposed surface area is 1.7 m2, emissivity is 0.9, and surface temperature...

Consider a person whose exposed surface area is 1.7 m2, emissivity is 0.9, and surface temperature is 32°C. Determine the total rate of heat loss from that person by radiation and convection in a large room having walls at a temperature of 18oC. The convective heat transfer coefficient is 5 W/m2.K

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a surface of area 26 m2 at which the convection and radiation heat transfer coefficients...
Consider a surface of area 26 m2 at which the convection and radiation heat transfer coefficients are 13.05 W/m2·K and 20.39 W/m2·K, respectively. Assume the medium and the surrounding surfaces are at the same temperature. Determine the single equivalent heat transfer coefficient (in W/m2·K). (Round the final answer to two decimal places.)
Determine the total rate of heat transfer from a person standing in a breezy room at...
Determine the total rate of heat transfer from a person standing in a breezy room at 20 ̊C if the exposed surface area and the average outer surface temperature of the person are 1.2 m2 and 29 ̊C, respectively, and the convection heat transfer coefficient is 5 W/(m2- ̊C). The Stefan-Boltzmann constant is 5.67 x 10-8 W/(m2- K4) and human skin emissivity is 0.95.
4.1A clothed or unclothed person feels comfortable when the skin temperature is about 33oC. Consider an...
4.1A clothed or unclothed person feels comfortable when the skin temperature is about 33oC. Consider an average man wearing summer clothes whose thermal resistance is 0.109 m2 ? oC/W. The man feels very comfortable while standing in a room maintained at 20oC. If this man were to stand in that room unclothed, determine the temperature at which the room must be maintained for him to feel thermally comfortable. Assume the latent heat loss from the person to remain the same....
A hot black painted pipe(2.54-cmO.D.and50-mlong)passesthrougha 20°C room to heat it. The temperature of the pipe surface...
A hot black painted pipe(2.54-cmO.D.and50-mlong)passesthrougha 20°C room to heat it. The temperature of the pipe surface is 150°C. If the heat transfer coefficient by convection to the air is 10 W/m2-K : a) What is the total heat rate loss? b) What is the radiation heat transfer coefficient? c) At what temperature of the pipe, the heat rate by convection equals the heat rate by radiation.
A wood fire has a temperature of 600◦C. A person with a total surface area of...
A wood fire has a temperature of 600◦C. A person with a total surface area of 1.6 m2 and at a temperature of 34◦C stands next to the fire. If the emissivity is 0.95, determine the rate of radiative heat transfer, in kW. Assume that only one-half of the total person surface area is exposed to the fire.
hot water with surface area 2.5 m^2 & temperature of 92* C radiates heat into a...
hot water with surface area 2.5 m^2 & temperature of 92* C radiates heat into a room which is at 22* C σ=5.67x10^-8 W/m^2 * K^4 what is the net heat transfer by radiation for 1.5 min, assuming the emissivity of boiling water is 1.0?
A heated spherical ceramic object (diameter = 10 cm) is held in a large enclosure whose...
A heated spherical ceramic object (diameter = 10 cm) is held in a large enclosure whose walls are maintained at a temperature of 300K. The sphere has an emissivity of 0.7. The rest of the enclosure is filled with stagnant nitrogen at a temperature of 300 K. Properties of the sphere: Density = 4500 kg/m3; heat capacity = 400 J/(kg.K); thermal conductivity = 22 W/(m.K). Assume properties of the sphere do not vary with temperature. a. Determine the rate of...
A 40-mm-thick plain wall of thermal conductivity 0.04 W/m-K and of temperature 304 K is exposed...
A 40-mm-thick plain wall of thermal conductivity 0.04 W/m-K and of temperature 304 K is exposed to both cold fluid and surroundings both at 298 K. The cold fluid and wall provide that the heat transfer coefficient is 10.5 W/m2-K and the emissivity of the wall is 0.83. Given that the area of the wall is 1.5m2 If the total heat transferred is 140.6987W, find the temperature of the other side of the plain wall
A spherical tank, 1.5 m in diameter, is maintained at a temperature of 120 ◦C and...
A spherical tank, 1.5 m in diameter, is maintained at a temperature of 120 ◦C and exposed to a convection environment with heat transfer coefficient, h=15 W/m2 ◦C and T∞ =20 ◦C. For the same surface temperature of the tank, it is desired to insulate the tank in order to decrease the heat loss by 45 percent, determine the thickness of insulation layer (k=0.2 W/m ◦C ) and the outer surface temperature.
A flat wall is exposed to an environmental temperature of 38 degrees C. The wall is...
A flat wall is exposed to an environmental temperature of 38 degrees C. The wall is covered with a layer of insulation 2.5 cm thick whose thermal conductivity is 1.8 W/(m.K), and the temperature of the wall on the inside of the insulation is 320 degrees C. The wall loses heat to the environment by convection. Compute the value of the convection heat transfer coefficient that must be maintained on the outer surface of the insulation to ensure that the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT