Question

Two blocks, each of mass m = 6.00 kg , are connected by a massless rope...

Two blocks, each of mass m = 6.00 kg , are connected by a massless rope and start sliding down a slope of incline θ = 36.0 ∘ at t=0.000 s. The slope's top portion is a rough surface whose coefficient of kinetic friction is μk = 0.300. At a distance d = 1.90 m from block A's initial position the slope becomes frictionless. What is the velocity of the blocks when block A reaches this frictional transition point? Assume that the blocks' width is negligible.

Homework Answers

Answer #1

Solution,

Given,

Mass, m = 6 kg

Distance, d = 1.9 m

Angle, theta = 36 degree

Forces,

mgsin(thet) = 6 x 9.8 x sin36 = 34.56 N

component of weight along the incline

u mg cos(theta) = 0.3 x 6 x 9.8 x cos36 = 14.27 N

Net force along the incline,

F = 34.56 - 14.27 = 20.29 N

Acceleration, a = F/m = 20.29/6 = 3.38 m/s^2

Using kinematic equation,

s = 0.5 at2

Time, t = sqrt(2 x 1.9/3.38) = 1.06 sec

Again using kinematic equation,

v = u + at

Velocity, v = 0 + 3.38 x 1.06 = 3.58 m/s

Comment in case any doubt please rate my answer ....

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two blocks of equal mass mA=mB= 4.75 kgkg are connected by a rope over a frictionless...
Two blocks of equal mass mA=mB= 4.75 kgkg are connected by a rope over a frictionless pulley, as shown in the figure. Block B begins to fall and pulls Block A up the incline. Block A is on a rough incline with the coefficient of kinetic friction of μk =0.10 between the block and the incline. The angle of the incline is θ=30°. a) Calculate the normal force on block A. b) Calculate the frictional force on block A from...
3. Two blocks of mass m and M = 10.0 ks are connected via a massless...
3. Two blocks of mass m and M = 10.0 ks are connected via a massless and frictionless pully with a configuration as shown. The coefficient of static friction is μs = 0.7 between block and surface, while the coefficient of kinematic fraction is μk = 0.4. 1) Draw free-body diagram for both block (identify all the forces on the two objects 2) What is the maximum mass m for the hanging block so that no sliding occurs? 3) If...
Block A (mass 40 kg) and block B (mass 80 kg) are connected by a string...
Block A (mass 40 kg) and block B (mass 80 kg) are connected by a string of negligible mass as shown in the figure. The pulley is frictionless and has a negligible mass. If the coefficient of kinetic friction between block A and the incline is μk = 0.26 and the blocks are released from rest, determine the change in the kinetic energy of block A as it moves from C to D, a distance of 23 m up the...
Block A (mass 40 kg) and block B (mass 80 kg) are connected by a string...
Block A (mass 40 kg) and block B (mass 80 kg) are connected by a string of negligible mass as shown in the figure. The pulley is frictionless and has a negligible mass. If the coefficient of kinetic friction between block A and the incline is μk = 0.24 and the blocks are released from rest, determine the change in the kinetic energy of block A as it moves from C to D, a distance of 19 m up the...
In the figure, the two blocks are attached by a massless rope over a frictionless pulley,...
In the figure, the two blocks are attached by a massless rope over a frictionless pulley, and block M1 slides on the table without friction. The masses of the blocks are: M1 = 7.90kg and M2 = 3.70kg. Calculate the tension in the rope. ( g = 9.80 m/s2)
Two blocks of mass 3.5 kg, and 8.0 kg are connected by a massless string that...
Two blocks of mass 3.5 kg, and 8.0 kg are connected by a massless string that passes over a frictionless pulley. The inclines are frictionless. Find (a) the magnitude of acceleration of each block and (b) the tension in the string. answer should be: (2.45m/s2 , 30.6 N) please show me how to get those answers
Two blocks with masses M1 and M2 are connected by a massless string that passes over...
Two blocks with masses M1 and M2 are connected by a massless string that passes over a massless pulley as shown. M1 has a mass of 2.25 kg and is on an incline of θ1=46.5∘ with coefficient of kinetic friction μ1=0.205. M2 has a mass of 6.05 kg and is on an incline of θ2=33.5∘ with coefficient of kinetic friction μ2=0.105. The two‑block system is in motion with the block of mass M2 sliding down the ramp. Find the magnitude...
Two blocks are connected by a massless string that runs across a frictionless pulley with a...
Two blocks are connected by a massless string that runs across a frictionless pulley with a mass of 5.00 kg and a radius of 10.0 cm. The first block with an unknown mass of m1 sits on a horizontal surface and is also connected to a spring with a spring constant of k = 250 N/m. The coefficient of kinetic friction between the first block and the surface is 0.400. The second block with a mass of m2 = 6.00...
In the figure, two blocks are shown with an inclined plane. The two blocks are connected...
In the figure, two blocks are shown with an inclined plane. The two blocks are connected by a massless string strung over a massless pulley. The mass of Block #1 is 3.57 kg and that of Block #2 is 11.0 kg. The angle θ of the incline is 43.0 degrees. The plane is NOT smooth and has a coefficient of static friction of 0.570 and a coefficient of kinetic friction of 0.240. Taking the positive direction to be up the...
Block A, mass 5.00 kg, rests on a surface with μk = 0.600. A massless rope...
Block A, mass 5.00 kg, rests on a surface with μk = 0.600. A massless rope is attached to its right side, and runs over a pulley, treated as a thin ring, mass 1.00 kg and radius 5.00 cm, to Block B, mass 7.00 kg, which hangs from the rope and is held at rest. The rope does not slip over the pulley, and the pulley spins on a frictionless axle. Block B is released from rest, and after an...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT