Question

Calculate the kinetic energy that the earth (ME = 5.98× 1024 kg) has because of (a)...

Calculate the kinetic energy that the earth (ME = 5.98× 1024 kg) has because of (a) its rotation about its own axis (RE = 6.38× 106 m) and (b) its motion around the sun (Ro = 1.50× 1011 m). Assume that the earth is a uniform sphere and that its path around the sun is circular. For comparison, the total energy used in the United States in one year (365.25 days) is about 9.3× 1019J. Answer to 3 significant figures.

Homework Answers

Answer #1

Please like it.

Thankyou

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Calculate the kinetic energy that the earth has because of (a) its rotation about its own...
Calculate the kinetic energy that the earth has because of (a) its rotation about its own axis and (b) its motion around the sun. Assume that the earth is a uniform sphere and that its path around the sun is circular. For comparison, the total energy used in the United States in one year is about 1.1 x 1020 J.
Calculate the KE that the earth has because of a) it's rotation about its own axis...
Calculate the KE that the earth has because of a) it's rotation about its own axis and b) its morion around the sun. Assume that the earth is a uniform sphere and that its path around the sun is circular. for comparison, the total energy used in the US in one year is about 1.1 x 10^20 J.
A satellite is in a circular orbit about the earth (ME = 5.98 x 1024 kg)....
A satellite is in a circular orbit about the earth (ME = 5.98 x 1024 kg). The period of the satellite is 1.04 x 104 s. What is the speed at which the satellite travels
Earth has a mass of 5.97 * 10^24 kg and a radius of 6.38 *10^6 m....
Earth has a mass of 5.97 * 10^24 kg and a radius of 6.38 *10^6 m. Assume it is a uniform solid sphere. The distance of Earth from the Sun is 1.50 * 10^11 m. (Assume Earth completes a single rotation in 24.0 hours and orbits the Sun once every 365 Earth days.) (a) Calculate the angular momentum of Earth in its orbit around the Sun. (b) Calculate the angular momentum of Earth on its axis. Please show your work.
1. A satellite is in a circular orbit about the earth (ME = 5.98 x 1024...
1. A satellite is in a circular orbit about the earth (ME = 5.98 x 1024 kg). The period of the satellite is 2.35 x 104 s. What is the speed at which the satellite travels? 2. Two satellites are in circular orbits around the earth. The orbit for satellite A is at a height of 545 km above the earth’s surface, while that for satellite B is at a height of 787 km. Find the orbital speed for (a)...
A satellite is in a circular orbit around the Earth at an altitude of 3.84  106 m....
A satellite is in a circular orbit around the Earth at an altitude of 3.84  106 m. (a) Find the period of the orbit. (Hint: Modify Kepler's third law so it is suitable for objects orbiting the Earth rather than the Sun. The radius of the Earth is 6.38  106 m, and the mass of the Earth is 5.98  1024 kg.) h (b) Find the speed of the satellite. km/s (c) Find the acceleration of the satellite. m/s2 toward the center of the...
A satellite is in a circular orbit around the Earth at an altitude of 1.66 106...
A satellite is in a circular orbit around the Earth at an altitude of 1.66 106 m. (a) Find the period of the orbit (in hrs). (Hint: Modify Kepler's third law: T2 = (4π2/GMS)r3 so it is suitable for objects orbiting the Earth rather than the Sun. The radius of the Earth is 6.38 106 m, and the mass of the Earth is 5.98 1024 kg.) (b) Find the speed of the satellite (in km/s). (c) Find the acceleration of...
What is the total kinetic energy of the Earth due to its rotation around the sun...
What is the total kinetic energy of the Earth due to its rotation around the sun and it’s spin about its own axis?
A satellite of mass 1525 kg is in circular orbit around Earth. The radius of the...
A satellite of mass 1525 kg is in circular orbit around Earth. The radius of the orbit of the satellite is equal to 1.5 times the radius of Earth (RE = 6.378*106 m, ME = 5.98*1024 kg, G = 6.67*10-11 Nm2/kg2). (a) Find the orbital period of the satellite? (b) Find the orbital (tangential) velocity of the satellite.  (c) Find the total energy of the satellite?
A person of mass 75 kg is standing on the surface of the Earth. a. Calculate...
A person of mass 75 kg is standing on the surface of the Earth. a. Calculate the total energy of this individual, assuming they are at rest relative to the surface. (Hint: Use the expression for gravitational potential energy (*NOT Ug=mgh*)). Although the person is standing at rest relative to the surface of the Earth, they are rotating along with the Earth and thus store some kinetic energy.) Ignore the rotation of the Earth about the Sun, the motion of...