Question

A cord is used to vertically lower an initially stationary block of mass M = 20...

A cord is used to vertically lower an initially stationary block of mass M = 20 kg at a constant downward acceleration of g/8. When the block has fallen a distance d = 3.5 m

A. find the work done by the cord's force on the block.

B. Find the kinetic energy of the block

C. Find the speed of the block

Homework Answers

Answer #1

Using f = M*a , consider a FBD of the block M*a = - M * g / 8 = T - M*g

The tension in the cord is T

T = M*g - M*g / 8

T = 7 M g / 8

Work done by the T is - 7 M * g * d / 8 = -7 * 20 * 9.8 * 3.5 / 8 = -600.25 =600.25 N in opp direction

Work done by the weight of the block is = M * g* d

the net is equal to kinetic energy , or M * g * d / 8 = 20* 9.8 * 3.5 / 8 = 85.75 kg m^2/ s^2 = 85.75 J

This is related to the speed of the block , V , as

0.5* M * v^2 = M * g* d / 8

V = 2 * sqrt ( g * d )

v = 2 * sqrt ( 9.8 * 3.5 )

V = 11.7 m/s

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The figure shows an initially stationary block of mass m on a floor. A force of...
The figure shows an initially stationary block of mass m on a floor. A force of magnitude 0.500mg is then applied at upward angle θ = 20°. What is the magnitude of the acceleration of the block across the floor if (a) μs = 0.620 and μk = 0.540 and (b) μs = 0.440 and μk = 0.310
The figure shows an initially stationary block of mass m on a floor. A force of...
The figure shows an initially stationary block of mass m on a floor. A force of magnitude 0.500mg is then applied at upward angle θ = 20°. What is the magnitude of the acceleration of the block across the floor if (a) μs = 0.630 and μk = 0.530 and (b) μs = 0.430 and μk = 0.320?
A block (mass = 1.2 kg) is hanging from a massless cord that is wrapped around...
A block (mass = 1.2 kg) is hanging from a massless cord that is wrapped around a pulley (moment of inertia = 1.0 x 10-3 kg·m2), as the figure shows. Initially the pulley is prevented from rotating and the block is stationary. Then, the pulley is allowed to rotate as the block falls. The cord does not slip relative to the pulley as the block falls. Assume that the radius of the cord around the pulley remains constant at a...
A block (mass = 3.0 kg) is hanging from a massless cord that is wrapped around...
A block (mass = 3.0 kg) is hanging from a massless cord that is wrapped around a pulley (moment of inertia = 1.2 x 10-3 kg·m2), as the figure shows. Initially the pulley is prevented from rotating and the block is stationary. Then, the pulley is allowed to rotate as the block falls. The cord does not slip relative to the pulley as the block falls. Assume that the radius of the cord around the pulley remains constant at a...
A block (mass = 1.0 kg) is hanging from a massless cord that is wrapped around...
A block (mass = 1.0 kg) is hanging from a massless cord that is wrapped around a pulley (moment of inertia = 1.1 x 10-3 kg·m2), as the figure shows. Initially the pulley is prevented from rotating and the block is stationary. Then, the pulley is allowed to rotate as the block falls. The cord does not slip relative to the pulley as the block falls. Assume that the radius of the cord around the pulley remains constant at a...
A block (mass = 2.3 kg) is hanging from a massless cord that is wrapped around...
A block (mass = 2.3 kg) is hanging from a massless cord that is wrapped around a pulley (moment of inertia = 1.7 x 10-3 kg·m2), as the figure shows. Initially the pulley is prevented from rotating and the block is stationary. Then, the pulley is allowed to rotate as the block falls. The cord does not slip relative to the pulley as the block falls. Assume that the radius of the cord around the pulley remains constant at a...
A block (mass = 59.1 kg) is hanging from a massless cord that is wrapped around...
A block (mass = 59.1 kg) is hanging from a massless cord that is wrapped around a pulley (moment of inertia = 1/2MR2 kg · m2, where M = 6.9 kg is the mass of the pulley and R=1.3 m is its radius ), as the drawing shows. Initially the pulley is prevented from rotating and the block is stationary. Then, the pulley is allowed to rotate as the block falls. The cord does not slip relative to the pulley...
A 0.400kg0.400kg block is initially at rest on a horizontal surface, and is attached to an...
A 0.400kg0.400kg block is initially at rest on a horizontal surface, and is attached to an initially unstreteched spring with a force constant of 2.00N/m2.00N/m. The coefficient of kinetic friction between the block and the surface is 0.4000.400. A constant force of 2.30N2.30N to the right is applied to the block. (A) Draw a free body diagram showing all forces on the block as it moves to the right. Determine (B) the initial Kinetic Energy of the block:  J, and (C)...
A 0.400kg0.400kg block is initially at rest on a horizontal surface, and is attached to an...
A 0.400kg0.400kg block is initially at rest on a horizontal surface, and is attached to an initially unstreteched spring with a force constant of 2.00N/m2.00N/m. The coefficient of kinetic friction between the block and the surface is 0.4000.400. A constant force of 2.30N2.30N to the right is applied to the block. (A) Draw a free body diagram showing all forces on the block as it moves to the right. Determine (B) the initial Kinetic Energy of the block:  J, and (C)...
A bullet of mass 12.4 g is fired into an initially stationary block and comes to...
A bullet of mass 12.4 g is fired into an initially stationary block and comes to rest in the block. The block, of mass 1.15 kg, is subject to no horizontal external forces during the collision with the bullet. After the collision, the block is observed to move at a speed of 4.00 m