Question

How much work must we do on a proton to move it from point A, which...

How much work must we do on a proton to move it from point A, which is at a potential of +50V, to point B, which is at a potential of -50 V, along the semicircular path shown in the figure? Assume the system is isolated from outside forces.


(e = 1.60 × 10-19 C)

A.) 1.6 J

B.) 1.60 × 10-17 J

c.) -1.60 × 10-17 J

D.) -1.6 J

E.) This cannot be determined because we do not know the distance traveled.

Homework Answers

Answer #1

Comment the work done was found to be -1.6*10^-17 J

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two point charges are fixed in place along the x axis as shown in the figure...
Two point charges are fixed in place along the x axis as shown in the figure above. The charge Q1=-3 μμC is located at the origin. The charge Q2=4 μμC is a distance a = 0.46 m to the right of the origin. 1) Calculate the x component of the electric field at point P a distance h=0.32 m above the origin. Ex = -0.115 × 106 N/C Ex = -0.094 × 106 N/C Ex = 0.264 × 106 N/C...
Consider a charge of -0.3 C which is moved from a point in space at electric...
Consider a charge of -0.3 C which is moved from a point in space at electric potential V=3 volts to one at V=1 volts. The charge begins at rest and ends at rest. a)Along the way, does the average electric field point more or less toward the final point, or more or less away from it, on average? Justify your answer. b) Along the way, does the average electric force point more or less toward the final point, or more...
Question 1 (1 point) Which is not necessary in order to do work on an object...
Question 1 (1 point) Which is not necessary in order to do work on an object (use the scientific definition of work)? Question 1 options: There must be a change in momentum. A net force must be applied to the object. The object must undergo a displacement. A component of the force must be in the direction of motion. Question 2 (1 point) The change in gravitational potential energy for a 1.9 kg box lifted 2.2 m is: Question 2...
Learning Goal: To understand how to apply the law of conservation of energy to situations with...
Learning Goal: To understand how to apply the law of conservation of energy to situations with and without nonconservative forces acting. The law of conservation of energy states the following: In an isolated system the total energy remains constant. If the objects within the system interact through gravitational and elastic forces only, then the total mechanical energy is conserved. The mechanical energy of a system is defined as the sum of kinetic energy K and potential energy U. For such...
1. Which describes the vector calculation of the Biot-Savart law?    a. The length element in...
1. Which describes the vector calculation of the Biot-Savart law?    a. The length element in the direction of the current is crossed into a vector directed from that element toward the point of measurement.    b. The length element in the direction of the current is dotted into a vector directed from that element toward the point of measurement.    c. The magnetic field vector is crossed into a vector directed from a current-length element toward the point of...
just do questions 5 through 10 3.13.6 Question 110 pts A 319 kg motorcycle is parked...
just do questions 5 through 10 3.13.6 Question 110 pts A 319 kg motorcycle is parked in a parking garage. If the car has 35,494 J of potential energy, how many meters above ground is the car? Report your answer to 1 decimal place. Please do not include units or the answer will be marked incorrect. Flag this Question Question 210 pts A box sitting on the top of a hill has 252 J of potential energy. If the hill...
21) A person carries a 25.0-N rock through the path shown in the figure, starting at...
21) A person carries a 25.0-N rock through the path shown in the figure, starting at point A and ending at point B. The total time from A to B is 1.50 min. How much work did gravity do on the rock between A and B? A) 625 J B) 20.0 J C) 275 J D) 75 J E) 0 J 22) A person carries a 2.00-N pebble through the path shown in the figure, starting at point A and...
10. A spherical conductor of radius R = 1.5cm carries the charge of 45μ, (a) What...
10. A spherical conductor of radius R = 1.5cm carries the charge of 45μ, (a) What is the charge density (ρ) of the sphere? (b) Calculate the electric field at a point r = 0.5cm from the center of the sphere. (c) What is the electric field on the surface of the sphere? 11. Two capacitors C1 and C2 are in series with a voltage V across the series combination. Show that the voltages V1 and V2 across C1 and...
2 Equipartition The laws of statistical mechanics lead to a surprising, simple, and useful result —...
2 Equipartition The laws of statistical mechanics lead to a surprising, simple, and useful result — the Equipartition Theorem. In thermal equilibrium, the average energy of every degree of freedom is the same: hEi = 1 /2 kBT. A degree of freedom is a way in which the system can move or store energy. (In this expression and what follows, h· · ·i means the average of the quantity in brackets.) One consequence of this is the physicists’ form of...
Finding the Spring Constant We can describe an oscillating mass in terms of its position, velocity,...
Finding the Spring Constant We can describe an oscillating mass in terms of its position, velocity, and acceleration as a function of time. We can also describe the system from an energy perspective. In this experiment, you will measure the position and velocity as a function of time for an oscillating mass and spring system, and from those data, plot the kinetic and potential energies of the system. Energy is present in three forms for the mass and spring system....
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT