Question

Physics_2_2.5 An ideal monatomic gas is in a vessel with the volume V1 = 1m3 under...

Physics_2_2.5

An ideal monatomic gas is in a vessel with the volume V1 = 1m3 under the pressure p1 = 2 105 Pa. The gas is first heated at a constant pressure to the Volume V2 = 3m3 and then at constant volume to the pressure p2 = 5 105 Pa. Find the amount of heat Q supplied to the gas.

A clear process is highly appreciated! Thank you so much for the help!

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In the initial state, an ideal gas has pressure p1, volume V1 and temperature T1. Now...
In the initial state, an ideal gas has pressure p1, volume V1 and temperature T1. Now the gas changes its state by effecting a state change so that it reaches the pressure p2, the volume V2 and the temperature T2 in the new state. The pressure doubles during this state change, which is an isochore process. a) Find the work W performed during the isochore process. b) The heat Q is exchanged between the gas and the surroundings during the...
An ideal monatomic gas is contained in a vessel of constant volume 0.400 m3. The initial...
An ideal monatomic gas is contained in a vessel of constant volume 0.400 m3. The initial temperature and pressure of the gas are 300 K and 5.00 atm, respectively. The goal of this problem is to find the temperature and pressure of the gas after 18.0 kJ of thermal energy is supplied to the gas. (a) Use the ideal gas law and initial conditions to calculate the number of moles of gas in the vessel. 80.99 Correct: Your answer is...
The working substance of an engine is 1.00 mol of a monatomic ideal gas. The cycle...
The working substance of an engine is 1.00 mol of a monatomic ideal gas. The cycle begins at P1=1.00 atm and V1=24.6L. The gas is heated at constant volume to P2=2.00atm. It then expands at constant pressure until its volume is 49.2L. The gas is then cooled at constant volume until its pressure is again 1.00 atm. It is then compressed at constant pressure to its original state. All the steps are quasi-static and reversible. Calculate the TOTAL work done...
An ideal monatomic gas is contained in a vessel of constant volume 0.330 m3. The initial...
An ideal monatomic gas is contained in a vessel of constant volume 0.330 m3. The initial temperature and pressure of the gas are 300 K and 5.00 atm, respectively. The goal of this problem is to find the temperature and pressure of the gas after 24.0 kJ of thermal energy is supplied to the gas. (a) Use the ideal gas law and initial conditions to calculate the number of moles of gas in the vessel. Your response differs from the...
8. Three moles of a monatomic ideal gas are heated at a constant volume of 2.10...
8. Three moles of a monatomic ideal gas are heated at a constant volume of 2.10 m³. The amount of heat added is 5.3 x 10^3J. Determine the change in pressure.
A container is filled with an ideal diatomic gas to a pressure and volume of P1...
A container is filled with an ideal diatomic gas to a pressure and volume of P1 and V1, respectively. The gas is then warmed in a two-step process that increases the pressure by a factor of three and the volume by a factor of two. Determine the amount of energy transferred to the gas by heat if the first step is carried out at constant volume and the second step at constant pressure. (Use any variable or symbol stated above...
A student wrote: If I expand an ideal gas from V1 to V2 under constant external...
A student wrote: If I expand an ideal gas from V1 to V2 under constant external pressure and pex, then the work done is w = -pex(V2 - V1). As a result, if the expansion is isothermal, then as delta U = q + w = 0, then q = -w = pex(V2 - V1). Therefore, delta S =qrev/T=(p/T)(V2 - V1). Is this statement correct or incorrect? Explain your answer.
Three moles of a monatomic ideal gas are heated at a constant volume of 2.90 m3....
Three moles of a monatomic ideal gas are heated at a constant volume of 2.90 m3. The amount of heat added is 5.10 103 J. (a) What is the change in the temperature of the gas? _____K (b) Find the change in its internal energy. _____J (c) Determine the change in pressure. _____Pa
Rectangular PV Cycle A piston contains 260 moles of an ideal monatomic gas that initally has...
Rectangular PV Cycle A piston contains 260 moles of an ideal monatomic gas that initally has a pressure of 2.61 × 105 Pa and a volume of 4.9 m3. The piston is connected to a hot and cold reservoir and the gas goes through the following quasi-static cycle accepting energy from the hot reservoir and exhausting energy into the cold reservoir. 1. The pressure of the gas is increased to 5.61 × 105 Pa while maintaining a constant volume. 2....
A monatomic gas is taken through two steps; first its pressure is increased from P1 to...
A monatomic gas is taken through two steps; first its pressure is increased from P1 to 2.80P1 at constant volume. Then its volume is increased from V1 to 1.50V1 at constant pressure. (a) How much heat is transferred to the gas during this entire process if V1 = 6.92 ✕ 10−3 m3 and P1 = 1.21 atm? J (b) How much heat would be transferred during the entire process, if the gas was a diatomic one?