Question

Assume earth’s orbit to be circular and that Thanos has snapped his fingers and decreased the...

Assume earth’s orbit to be circular and that Thanos has snapped his fingers and decreased the sun’s mass by half for inadequately explained reasons. What orbit does the earth have then? Will the earth escape the solar system?

Homework Answers

Answer #1

The rotation of Earth around the Sun is due to the equilibrium of centrepetal and centrifugal forces. The Centrepetal force is the inward force, which pulls the object towards the center of the circle, and centrefugal force is the force which makes the body to escape from the orbit.

If the mass of the the sun is halved, then the centrepetal force is also halved,but the centrefugal force remains the same. So the Earth will escape from its orbit and escapes the Solar system.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Classical Mechanics problem: Assume Earth’s orbit is circular (a good approximation) and that the Sun’s mass...
Classical Mechanics problem: Assume Earth’s orbit is circular (a good approximation) and that the Sun’s mass suddenly decreases by half. Yikes! Will Earth escape the solar system and what type of orbit (circular, elliptical, parabolic or hyperbolic) will it have? Show your work
A 200 kg satellite is placed in Earth’s orbit 200 km above the surface. The Radius...
A 200 kg satellite is placed in Earth’s orbit 200 km above the surface. The Radius of Earth is 6.37 x 106 m, and the Earth’s mass is 5.98 x 1024 kg. A) Assuming a circular orbit, how long does the satellite take to complete one orbit? B) What is the satellite’s speed?
The radius of the Earth’s orbit around the sun (assumed to be circular) is 1.50∙108 km,...
The radius of the Earth’s orbit around the sun (assumed to be circular) is 1.50∙108 km, and the Earth travels around this obit in 365 days. The mass of the Earth is 5.97∙1024 kg. magnitude of the orbital velocity of the Earth: 2.98.104 m/s acceleration of the earth toward the sun: 5.91.10-3 m/s2 a) What is the magnitude of centripetal force acting on the Earth? b) What is responsible for providing this centripetal force? c) Calculate the gravitational acceleration OF...
The radius of the Earth’s orbit around the sun (assumed to be circular) is 1.50∙10^8 km,...
The radius of the Earth’s orbit around the sun (assumed to be circular) is 1.50∙10^8 km, and the Earth travels around this obit in 365 days. The mass of the Earth is 5.97∙10^24 kg. (a)What is the magnitude of the orbital velocity of the Earth, in m/s? (b)What is the magnitude of centripetal force acting on the Earth? (c)Calculate the gravitational acceleration OF the Earth (not ON the Earth). Hint: think of your answer to part (d), and set two...
Consider a 355kg satellite in a circular orbit at a distance of 3.07 x 104 km...
Consider a 355kg satellite in a circular orbit at a distance of 3.07 x 104 km above the Earth’s surface. What is the minimum amount of work the satellite’s thrusters must do to raise the satellite to a geosynchronous orbit? Geosynchronous orbits occur at approximately 3.60 x 104 km above the Earth’s surface. The radius of the Earth and the mass of the Earth are RE = 6.37 x 103 km and ME = 5.97 x 1024 kg respectively. The...
Compare two objects in orbit around the earth. One is a satellitein an orbit relatively close...
Compare two objects in orbit around the earth. One is a satellitein an orbit relatively close to the earth’s surface, and the other is the moon. Assume both have circular orbits. Which of the orbiting bodies has the largest centripetalacceleration? What is the centripetalacceleration of the moon?How would your answer change if Newton’s law of gravity was wrong and all bodies experienced a constant force independent of distance?
QUESTION 1 Part 1 Engineers wish to launch a satellite from the surface of the Moon....
QUESTION 1 Part 1 Engineers wish to launch a satellite from the surface of the Moon. What is the minimum speed the satellite must have to escape the Moon’s gravity – that is, what is the escape velocity at the surface of the Moon? The Moon has a mass of 7.3x10^22 kg and a radius of 1.7x10^6 m. a. 1700 m/s b. 5.7x10^6 m/s c. It depends on the mass of the satellite. d. 2400 m/s Part 2 The satellite...
Consider a satellite of mass m in a circular orbit of radius r around the Earth...
Consider a satellite of mass m in a circular orbit of radius r around the Earth of mass ME and radius RE. 1. What is the gravitational force (magnitude and direction) on the satellite from Earth? 2. If we define g(r) to be the force of gravity on a mass m at a radial distance r from the center of the Earth, divided by the mass m, then evaluate the ratio g(r)/g(RE)to see how g varies with radial distance. If...
A planet requires 230 (Earth) days to complete its circular orbit around its sun, which has...
A planet requires 230 (Earth) days to complete its circular orbit around its sun, which has a mass of 2.4 x 1030 kg. What are the planet's (a) orbital radius and (b) orbital speed?
15. A satellite in Earth orbit has a mass of 107 kg and is at an...
15. A satellite in Earth orbit has a mass of 107 kg and is at an altitude of 1.91 106 m. (Assume that U = 0 as r → ∞.) (a) What is the potential energy of the satellite–Earth system? (b) What is the magnitude of the gravitational force exerted by the Earth on the satellite? (c) What force, if any, does the satellite exert on the Earth? (Enter the magnitude of the force, if there is no force enter...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT