Question

Copper melts at 1085 °C. The specific heat of copper is 387 J/(kg· °C). The latent...

Copper melts at 1085 °C. The specific heat of copper is 387 J/(kg· °C). The latent heat of fusion of copper is 20.7×104 J/kg. How much heat is needed to raise the temperature of 0.050 kg of copper from 23 °C to molten copper at 1085 °C?  

Homework Answers

Answer #1

heat require to melt the copper = heat required to raise the temperature of solid copper from 23 degree to 1085 degree + absorption of latent heat of fusion

heat required =

=

= 0.05 * { (387*[1085-23]) + 207000)

= 0.05* [617994]

= 30899.7 Joules.

Therefore, heat required = 30899.7Joules

Please ask your doubts or queries in the comment section below.

Please kindly upvote if you are satisfied with the solution.

Thank you.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The specific heat of mercury is 138 J/kg°C. Determine the latent heat of fusion of mercury...
The specific heat of mercury is 138 J/kg°C. Determine the latent heat of fusion of mercury using the following calorimeter data: 1.30 kg of solid Hg at its melting point of -39.0°C is placed in a 0.620 kg aluminum calorimeter with 0.400 kg of water at 12.80°C; the resulting equilibrium temperature is 2.91°C
The specific heat of a certain type of cooking oil is 1.75 J/(g·°C). How much heat...
The specific heat of a certain type of cooking oil is 1.75 J/(g·°C). How much heat energy is needed to raise the temperature of 2.62 kg of this oil from 23 °C to 191 °C?
8.33 kg of steam at temperature of 150 ∘C has 2.23×107 J of heat removed from...
8.33 kg of steam at temperature of 150 ∘C has 2.23×107 J of heat removed from it. Determine the final temperature and phase of the result once the heat has been removed if the heat is removed at constant pressure during the gas phase. For this problem, use the specific heat (at constant pressure) for water as 1850 J/kg∘C , the latent heat of vaporization as 2.256×106 J/kg , the specific heat of liquid water as 4186 J/kg∘C , the...
A 60 kg block of ice begins at -60 degrees the specific heat of ice is...
A 60 kg block of ice begins at -60 degrees the specific heat of ice is 2090 j/(kg)C. The latent heat of fusion of water is 3.3 x 10^5 and the latent heat of vaporization is 2.3 x 10^6 J/kg. How much energy is required to heat the ice to 0 degrees Celcius (melting point)? How much energy is required to heat the ice from -50C to the melting point and melt the ice? How much energy is required to...
The value of specific heat for copper is 390 J/kg⋅C∘, for aluminun is 900 J/kg⋅C∘, and...
The value of specific heat for copper is 390 J/kg⋅C∘, for aluminun is 900 J/kg⋅C∘, and for water is 4186 J/kg⋅C∘. What will be the equilibrium temperature when a 215 g block of copper at 245 ∘C is placed in a 155 g aluminum calorimeter cup containing 815 g of water at 16.0 ∘C?
The value of specific heat for copper is 390 J/kg⋅C∘, for aluminun is 900 J/kg⋅C∘, and...
The value of specific heat for copper is 390 J/kg⋅C∘, for aluminun is 900 J/kg⋅C∘, and for water is 4186 J/kg⋅C∘ What will be the equilibrium temperature when a 215 g block of copper at 245 ∘C is placed in a 155 g aluminum calorimeter cup containing 875 g of water at 12.0 ∘C?
The value of specific heat for copper is 390 J/kg⋅C∘, for aluminun is 900 J/kg⋅C∘,and for...
The value of specific heat for copper is 390 J/kg⋅C∘, for aluminun is 900 J/kg⋅C∘,and for water is 4186 J/kg⋅C∘. What will be the equilibrium temperature when a 275 g block of copper at 255 ∘C is placed in a 155 g aluminum calorimeter cup containing 815 g of water at 16.0 ∘C?
The value of specific heat for copper is 390 J/kg?C?, for aluminun is 900 J/kg?C?, and...
The value of specific heat for copper is 390 J/kg?C?, for aluminun is 900 J/kg?C?, and for water is 4186 J/kg?C?. What will be the equilibrium temperature when a 215 g block of copper at 255 ?C is placed in a 155 g aluminum calorimeter cup containing 875 g of water at 16.0 ?C?
Calculate the change in entropy as 0.4091 kg of ice at 273.15 K melts. The latent...
Calculate the change in entropy as 0.4091 kg of ice at 273.15 K melts. The latent heat of fusion of water is 333000 J/kg .
The value of specific heat for copper is 390 J/kg⋅C∘, for aluminun is 900 J/kg⋅C∘, and...
The value of specific heat for copper is 390 J/kg⋅C∘, for aluminun is 900 J/kg⋅C∘, and for water is 4186 J/kg⋅C∘. What will be the equilibrium temperature when a 265 gg block of copper at 235 ∘C∘C is placed in a 155 gg aluminum calorimeter cup containing 875 gg of water at 16.0 ∘C∘C?