Question

Explain in detail, please write legibly A 10.0N force will stretch a given spring by 10.0cm....

Explain in detail, please write legibly

A 10.0N force will stretch a given spring by 10.0cm. This spring is then suspended from the ceiling and a 250g mass is attached to the spring. The mass is pulled down 12.5cm and released

a. Write the equation for the position of this oscillating mass, assuming that at t=0, the mass is at its maximum height

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 0.24 kg mass is attached to a light spring with a force constant of 30.9...
A 0.24 kg mass is attached to a light spring with a force constant of 30.9 N/m and set into oscillation on a horizontal frictionless surface. If the spring is stretched 5.0 cm and released from rest, determine the following. (a) maximum speed of the oscillating mass b) speed of the oscillating mass when the spring is compressed 1.5 cm (c) speed of the oscillating mass as it passes the point 1.5 cm from the equilibrium position (d) value of...
A 0.58 kg mass is attached to a light spring with a force constant of 31.9...
A 0.58 kg mass is attached to a light spring with a force constant of 31.9 N/m and set into oscillation on a horizontal frictionless surface. If the spring is stretched 5.0 cm and released from rest, determine the following. (a) maximum speed of the oscillating mass m/s (b) speed of the oscillating mass when the spring is compressed 1.5 cm m/s (c) speed of the oscillating mass as it passes the point 1.5 cm from the equilibrium position m/s...
A 0.68 kg mass is attached to a light spring with a force constant of 36.9...
A 0.68 kg mass is attached to a light spring with a force constant of 36.9 N/m and set into oscillation on a horizontal frictionless surface. If the spring is stretched 5.0 cm and released from rest, determine the following. (a) maximum speed of the oscillating mass    m/s (b) speed of the oscillating mass when the spring is compressed 1.5 cm    m/s (c) speed of the oscillating mass as it passes the point 1.5 cm from the equilibrium...
13.5 A spring with a spring constant of 450 N/m is stretched 20 cm from the...
13.5 A spring with a spring constant of 450 N/m is stretched 20 cm from the equilibrium position. a) What is the magnitude of the spring force at x = 20 cm? b) If a 5 kg mass is attached to the spring, what will the maximum acceleration be if the spring is released from the x = 20 cm stretched position? c) Will the acceleration be the same as the spring passes the x = 10 cm position? If...
A coil spring is suspended from the ceiling, a 16-lb weight is attached to the end...
A coil spring is suspended from the ceiling, a 16-lb weight is attached to the end of it, and the weight then comes to rest in its equilibrium position. The mass is in a medium that exerts a viscous resistance of 8 lb when the mass has a velocity of 1 ft/s. It is then pulled down 12 in. below its equilibrium position and released with an initial velocity of 2 ft/sec, directed upward. (a)   Use the Laplace transform to determine...
A block of mass m = 0.53 kg attached to a spring with force constant 119...
A block of mass m = 0.53 kg attached to a spring with force constant 119 N/m is free to move on a frictionless, horizontal surface as in the figure below. The block is released from rest after the spring is stretched a distance A = 0.13 m. (Indicate the direction with the sign of your answer. Assume that the positive direction is to the right.) The left end of a horizontal spring is attached to a vertical wall, and...
1) The position of a particle is given in cm by x = (4) cos 3πt,...
1) The position of a particle is given in cm by x = (4) cos 3πt, where t is in seconds. (a) Find the maximum speed.    m/s (b) Find the maximum acceleration of the particle. m/s2 2) An object of mass m is suspended from a vertical spring of force constant 1692 N/m. When the object is pulled down 2.51 cm from equilibrium and released from rest, the object oscillates at 5.10 Hz. Write expressions for the acceleration ax...
(c) (9 marks) A light spring of stiffness 50.0 Nm”1 hangs vertically with its lower end...
(c) A light spring of stiffness 50.0 Nm”1 hangs vertically with its lower end at a point O when no load is attached. (i) Outline what is meant by simple harmonic motion. (ii) If a small mass of 0.50 kg is now attached to the end of the spring, how far does the mass sag relative to point O? The mass is now pulled down and released (from rest) at a point 0.15 m below O. (iii) Write an equation...
A 6lb wieght can stretch a spring 6 inches. Suppose the weight is pulled 4 inches...
A 6lb wieght can stretch a spring 6 inches. Suppose the weight is pulled 4 inches past the equilibrium point and released from rest. The initial equation is y(t)=1/3*cos(8t)+0*sin(8t) Suppose that a damping force given in pounds numerically by 1.5 times the instantaneous velocity in feet per second acts on the 6lb weight. Find the position x of the weight as a funtion of time.
A force of 720 newtons stretches a spring 4 meters. A mass of 5 kg is...
A force of 720 newtons stretches a spring 4 meters. A mass of 5 kg is attached to the end of the spring and is released from a position .5 meters below the equilibrium position with a downward velocity of 8 meters per second. What is the equation of motion? Please solve using Differential equations