Question

A closed piston-cylinder system contains a 120 moles of neon, a monatomic ideal gas, at pressure...

A closed piston-cylinder system contains a 120 moles of neon, a monatomic ideal gas, at pressure PA = 2.5 atm and volume VA = 0.80 m3. It undergoes the following cyclic process:

A -> B: I There is isothermal expansion to volume double of the original.

B -> C: Constant-volume process back to its original pressure .

C -> A: Constant-pressure process back to its initial state

a) Draw a Pressure volume diagram for the cycle. You don't need to put numbers on your axes but the shape of your diagram must strongly resemble the process described. Indicate clearly points A, B and C , and show the direction of each process.

b) Is this a heat engine or a heat pump?

c) What is the temperature at point A?

d) What is the temperature at point B?

e) What is the change in internal energy in process A -> B?

f) How much work is done on the system in process B -> C?

g) How much heat is added in process A -> B?

h) How much heat is added in process B -> C?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A cylinder of monatomic ideal gas is sealed in a cylinder by a piston. Initially, the...
A cylinder of monatomic ideal gas is sealed in a cylinder by a piston. Initially, the gas occupies a volume of 3.00 L and the pressure is initially 105 kPa. The cylinder is placed in an oven that maintains the temperature at a constant value. 65.0 J of work is then done on the piston, compressing the gas (in other words, the gas does −65.0 J of work). The work is done very slowly so that the gas maintains a...
A cylinder sealed with a piston contains an ideal gas. Heat is added to the gas...
A cylinder sealed with a piston contains an ideal gas. Heat is added to the gas while the piston remains locked in place until the absolute temperature of the gas doubles. 1. The pressure of the gas a. doubles b. stays the same c. drops in half 2. The work done by the surroundings on the gas is a. positive b. negative c. zero 3. The thermal energy of the gas a. doubles b. stays the same c. drops in...
Consider the following four-process cycle that is carried out on a system of monatomic ideal gas,...
Consider the following four-process cycle that is carried out on a system of monatomic ideal gas, starting from state 1 in which the pressure is 88.0 kPa and the volume is 3.00 liters. Process A is an isothermal process that triples the volume; process B is a constant volume process that returns the system to a pressure of 88.0 kPa; process C is an isothermal process that returns the system to a volume of 3.00 liters; and process D is...
A frictionless piston-cylinder device and a rigid tank contain 3.3 kg of neon gas at the...
A frictionless piston-cylinder device and a rigid tank contain 3.3 kg of neon gas at the same temperature, pressure and volume. Now heat is transferred, and the temperature of both systems is increased by 10 degrees C. The amount of extra heat that must be supplied to neon gas in the cylinder that is maintained at constant pressure is ...
A balloon contains Helium (a monatomic ideal gas) at a pressure of 101325Pa and temperature of...
A balloon contains Helium (a monatomic ideal gas) at a pressure of 101325Pa and temperature of 20.0◦C. Please note that the pressure inside of a balloon must always equal the atmospheric pressure outside of the balloon. (a) If the volume of the balloon is 0.015m3, how many moles of Helium are inside the balloon? (b) What is the rms speed of the Helium in the balloon? (The molar mass g of Helium is 4.002602mol.) (c) If the temperature of the...
Rectangular PV Cycle A piston contains 260 moles of an ideal monatomic gas that initally has...
Rectangular PV Cycle A piston contains 260 moles of an ideal monatomic gas that initally has a pressure of 2.61 × 105 Pa and a volume of 4.9 m3. The piston is connected to a hot and cold reservoir and the gas goes through the following quasi-static cycle accepting energy from the hot reservoir and exhausting energy into the cold reservoir. 1. The pressure of the gas is increased to 5.61 × 105 Pa while maintaining a constant volume. 2....
Three moles of an ideal monatomic gas expand at a constant pressure of 2.90atm : the...
Three moles of an ideal monatomic gas expand at a constant pressure of 2.90atm : the volume of the gas changes from 3.30*10^-2m^3 to 4.50*10^-2m^3. Part A, Calculate the initial temperature of the gas. Part B, Calculate the final temperature of the gas. Part C, Calculate the amount of work the gas does in expanding. Part D, Calculate the amount of heat added to the gas. Part E, Calculate the change in internal energy of the gas.
Three moles of a monatomic ideal gas are heated at a constant volume of 2.90 m3....
Three moles of a monatomic ideal gas are heated at a constant volume of 2.90 m3. The amount of heat added is 5.10 103 J. (a) What is the change in the temperature of the gas? _____K (b) Find the change in its internal energy. _____J (c) Determine the change in pressure. _____Pa
17) Three moles of an ideal monatomic gas expand at a constant pressure of 2.70 atm...
17) Three moles of an ideal monatomic gas expand at a constant pressure of 2.70 atm ; the volume of the gas changes from 3.10×10−2 m3 to 4.60×10−2 m3 . Part A Calculate the initial temperature of the gas. Part B Calculate the final temperature of the gas. Part C Calculate the amount of work the gas does in expanding. Part D Calculate the amount of heat added to the gas. Part E Calculate the change in internal energy of...
The above pV diagram shows the expansion of 5.0 moles of a monatomic ideal gas from...
The above pV diagram shows the expansion of 5.0 moles of a monatomic ideal gas from state a to state b. As shown in the diagram, Pa = Pb = 600 Pa, Va = 3.0 m3, and Vb = 9.0 m3. The pressure is then reduced to 200 Pa without changing the volume, as the gas is taken from state b to state c. c. Determine Q for the process bc. d. Determine the change in thermal energy of the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT