Question

A wood block with mass 2 kg slides along the floor. It is given an initial...

A wood block with mass 2 kg slides along the floor. It is given an initial velocity of 10 m/s and comes to a stop after traveling 1.5 m. What is the coefficient of kinetic friction between the block and the floor?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
block 1 of mass m1 slides from rest along a frictionless ramp from an unknown height...
block 1 of mass m1 slides from rest along a frictionless ramp from an unknown height h and then collides with stationary block 2, which has mass m2 = 3m1 . The collision is an elastic one. After the collision, block 2 slides into a friction-filled region where the coefficient of kinetic friction is 0.5 and comes to a stop through a distance d = 10 m in that region. What is the height h?
A block of mass ?=4.50 kg m=4.50 kg slides along a horizontal table with velocity ?...
A block of mass ?=4.50 kg m=4.50 kg slides along a horizontal table with velocity ? 0 =2.50 m/s v0=2.50 m/s . At ?=0 x=0 , it hits a spring with spring constant ?=43.00 N/m k=43.00 N/m and it also begins to experience a friction force. The coefficient of friction is given by ?=0.300 μ=0.300 . How far has the spring compressed by the time the block first momentarily comes to rest? Assume the positive direction is to the right.  
A block of mass m = 2.90 kg slides along a horizontal table with velocity v...
A block of mass m = 2.90 kg slides along a horizontal table with velocity v 0 = 2.00 m/s . At x = 0 , it hits a spring with spring constant k = 33.00 N/m and it also begins to experience a friction force. The coefficient of friction is given by μ = 0.400 . How far has the spring compressed by the time the block first momentarily comes to rest? Assume the positive direction is to the...
A block of mass ?=4.80 kg slides along a horizontal table with velocity ?0=3.00 m/s. At...
A block of mass ?=4.80 kg slides along a horizontal table with velocity ?0=3.00 m/s. At ?=0, it hits a spring with spring constant ?=36.00 N/m and it also begins to experience a friction force. The coefficient of friction is given by ?=0.350. How far has the spring compressed by the time the block first momentarily comes to rest? Assume the positive direction is to the right.
Block 1, with mass m1 and speed 5.4 m/s, slides along an x axis on a...
Block 1, with mass m1 and speed 5.4 m/s, slides along an x axis on a frictionless floor and then undergoes a one-dimensional elastic collision with stationary block 2, with mass m2 = 0.65m1. The two blocks then slide into a region where the coefficient of kinetic friction is 0.56; there they stop. How far into that region do (a) block 1 and (b) block 2 slide?
A 5.00-kg 5.00-kg block is sent up a ramp inclined at an angle ?= 25.0 ∘...
A 5.00-kg 5.00-kg block is sent up a ramp inclined at an angle ?= 25.0 ∘ θ=25.0∘ from the horizontal. It is given an initial velocity ? 0 =15.0 m/s v0=15.0 m/s up the ramp. Between the block and the ramp, the coefficient of kinetic friction is ? k =0.50 μk=0.50 and the coefficient of static friction is ? s =0.60. μs=0.60. What distance ? D along the ramp's surface does the block travel before it comes to a stop?
A 5.0-kg wood block starts with an initial speed of 8.0 m/s and slides across the...
A 5.0-kg wood block starts with an initial speed of 8.0 m/s and slides across the floor until friction stops it. Estimate the resulting change in entropy of the universe. Assume that everything stays at a room temperature of 20°C.
A 1.0 kg block of wood is to be launched across a slippery floor by a...
A 1.0 kg block of wood is to be launched across a slippery floor by a compresssed spring. The stiffness constant of the spring is 100 N/m, and the spring is initially compressed by 0.50 meters. If the block slides 10 meters before coming to rest, what is the coefficient of sliding friction? If the block were to slide 0.50 meters - the very same distance the spring was compressed - what would be the coefficient of sliding friction?
A block with a mass m = 2.12 kg is pushed into an ideal spring whose...
A block with a mass m = 2.12 kg is pushed into an ideal spring whose spring constant is k = 3810 N/m. The spring is compressed x = 0.069 m and released. After losing contact with the spring, the block slides a distance of d = 2.07 m across the floor before coming to rest. a) Write an expression for the coefficient of kinetic friction between the block and the floor using the symbols given in the problem statement...
A 2.90 kg block on a horizontal floor is attached to a horizontal spring that is...
A 2.90 kg block on a horizontal floor is attached to a horizontal spring that is initially compressed 0.0340 m . The spring has force constant 850 N/m . The coefficient of kinetic friction between the floor and the block is 0.42 . The block and spring are released from rest and the block slides along the floor. Part A What is the speed of the block when it has moved a distance of 0.0190 m from its initial position?...