Question

A block weighing w newtons is suspended from a horizontal support by two wires. The first...

A block weighing w newtons is suspended from a horizontal support by two wires. The first wire extends up and to the left from the block, making a 41 degree angle with the horizontal support. A vector extending from the block along the first wire is labeled F 1. The second wire extends up and to the right from the block, making a 31 degree angle with the horizontal support. A vector extending from the block along the second wire is labeled F 2

What is the​ weight, w?

What is the magnitude of F1?

Homework Answers

Answer #1

See the diagram below:

The forces F1 and F2 are resolved into vertical and horizontal components as shown in the diagram.

Balancing the forces along horizontal:

  

Balancing the forces along the vertical:

Answer: The weight W is

.

Answer: the magnitude of F1 is

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
If a traffic light is stationary at a 4-way, and is suspended from two wires one...
If a traffic light is stationary at a 4-way, and is suspended from two wires one at a 53 degree angle and the second at a 37 degree angle relative to the horizontal, find the tension in two wires which support a traffic light if the mass of the traffic light is 30-kg. Please list any formulas used
The diagram below shows a block of mass m=2.00kgm=2.00kg on a frictionless horizontal surface, as seen...
The diagram below shows a block of mass m=2.00kgm=2.00kg on a frictionless horizontal surface, as seen from above. Three forces of magnitudes F1=4.00NF1=4.00N, F2=6.00NF2=6.00N, and F3=8.00NF3=8.00N are applied to the block, initially at rest on the surface, at angles shown on the diagram. (Figure 1) In this problem, you will determine the resultant (total) force vector from the combination of the three individual force vectors. All angles should be measured counterclockwise from the positive x axis (i.e., all angles are...
Engineering students are learning to use phasor diagrams to analyze RLC series circuits. They are given...
Engineering students are learning to use phasor diagrams to analyze RLC series circuits. They are given the following phasor diagram, and they are told that the AC power source has a frequency of 60.0 Hz and the resistor has a resistance of 84.0 Ω. Four vectors and a directional arrow are positioned on a coordinate plane. All vectors begin at the origin. In counterclockwise order, starting from the bottom: a vector labeled ΔVC = 15.0 V points down along the...
1.) A block of mass 0.40 kg is attached to the wire connected to the wall...
1.) A block of mass 0.40 kg is attached to the wire connected to the wall making an angle of 90 degrees with it. It is also attached to the ceiling with the wire making an angle of 53 degrees with the horizontal. Calculate tensions at each wire. (s the tension in the wire hinged to the ??wall and is the tension in the wire attached to the ceiling). 2.) A 5.0 kg wood block is on ice being pulled...
A block of weight w = 30.0 N sits on a frictionless inclined plane, which makes...
A block of weight w = 30.0 N sits on a frictionless inclined plane, which makes an angle θ = 33.0 ∘ with respect to the horizontal, as shown in the figure. (Figure 1)A force of magnitude F = 16.3 N , applied parallel to the incline, is just sufficient to pull the block up the plane at constant speed. PART A The block moves up an incline with constant speed. What is the total work WtotalWtotalW_total done on the...
3-A 1.0 kg block slides down an inclined plane of 39 0  from the horizontal. If the...
3-A 1.0 kg block slides down an inclined plane of 39 0  from the horizontal. If the block  starts from rest and hits the bottom in 5.1 s, what is the speed of the block, in the unit m/s, at the bottom of the incline? Assume a frictionless plane. 4-A bus negotiates a turn of radius 103 m while traveling at a speed of 92 km/h. If slipping just begins at this speed, what is the coefficient of static friction between the...
A block of weight w = 30.0 N sits on a frictionless inclined plane, which makes...
A block of weight w = 30.0 N sits on a frictionless inclined plane, which makes an angle θ = 35.0 ∘ with respect to the horizontal, as shown in the figure. (Figure 1) A force of magnitude F = 17.2 N , applied parallel to the incline, is just sufficient to pull the block up the plane at constant speed. PLEASE PUT ALL ANSWERS IN JOULES Part A The block moves up an incline with constant speed. What is...
A quarterback is set up to throw the football to a receiver who is running with...
A quarterback is set up to throw the football to a receiver who is running with a constant velocity ~vr directly away from the quarterback and is now a distance D away from the quarterback. The quarterback estimates that the ball must be thrown at an angle θ to the horizontal and the receiver must catch the ball a time interval tc after it is thrown. Assume the ball is thrown and caught at the same height y = 0...
ch 6 1: It is generally a good idea to gain an understanding of the "size"...
ch 6 1: It is generally a good idea to gain an understanding of the "size" of units. Consider the objects and calculate the kinetic energy of each one. A ladybug weighing 37.3 mg flies by your head at 3.83 km/h . ×10 J A 7.15 kg bowling ball slides (not rolls) down an alley at 17.5 km/h . J A car weighing 1260 kg moves at a speed of 49.5 km/h. 5: The graph shows the ?-directed force ??...
1) 2 point charges are separated by a distance of 8 cm. The left charge is...
1) 2 point charges are separated by a distance of 8 cm. The left charge is 48 mC and the right charge is -16mC. Using a full sheet of paper: draw the 2 charges separated by 8cm, centered in the sheet. (if you are missing a ruler estimate 8cm as ⅓ a paper sheet length). [6] a) Draw field lines to indicate the electric fields for this distribution. [4] b) Draw 3 equipotential surfaces, 1 each, that pass: -Through the...