Question

Q2: In the figure a disk rotates as shown. If moment of inertia of the disk  I...

Q2: In the figure a disk rotates as shown. If moment of inertia of the disk  I = 1.48×10^-4 kgm^2, f= 10rps , Raduis R = 0.03 m

a. Define and calculate (w)
 ………………………………………………………… …………………………………………………………

b. What is the relation between linear velocity (v) and(w) 
. Calculate v
………………………………………………………………………..

c. Define and calculate angula momentum (L)

………………………………………………………… …………………………………………………………

d. Calculate rotational K.E. (Krot)
…………………………………………………………..

e. Calculate translational K.E. (Ktrans) for the mass 0.005 kg
…………………………………………………………..

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A disk with moment of inertia I 1 rotates about a frictionless , vertical axle with...
A disk with moment of inertia I 1 rotates about a frictionless , vertical axle with angular speed W 1 =12 rad/s . A second disk, this one having moment of inertia l 2 =2l 1 and initially not rotating , drops onto the first disk. Because of friction between the surfaces , the two eventually reach the same angular speed w 2 . What is the final angular velocity of the combined system (in kg m/s^ 2 )
Moment of Inertia To find the moment of inertia of different objects and to observe the...
Moment of Inertia To find the moment of inertia of different objects and to observe the changes in angular acceleration relative to changing moments of inertia. To also learn how to use calipers in making precise measurements The momentum of inertia of an object is calculated as I=∑mr^2 If the object in question rotates around a central point, then it can be considered a "point mass", and its moment of inertia is simply,  I=mr^2 where r is from the central point...
A playground ride consists of a disk of mass M = 59 kg and radius R...
A playground ride consists of a disk of mass M = 59 kg and radius R = 1.9 m mounted on a low-friction axle. A child of mass m = 18 kg runs at speed v = 2.2 m/s on a line tangential to the disk and jumps onto the outer edge of the disk. (b) Relative to the axle, what was the magnitude of the angular momentum of the child before the collision? L|C| =    (c) Relative to the...
A barbell spins around a pivot at its center at A. The barbell consists of two...
A barbell spins around a pivot at its center at A. The barbell consists of two small balls, each with mass 450 grams (0.45 kg), at the ends of a very low mass rod of length d = 50 cm (0.5 m; the radius of rotation is 0.25 m). The barbell spins clockwise with angular speed 120 radians/s. We can calculate the angular momentum and kinetic energy of this object in two different ways, by treating the object as two...
The pendulum in the figure consists of a uniform disk with radius r = 11.0 cm...
The pendulum in the figure consists of a uniform disk with radius r = 11.0 cm and mass 470 g attached to a uniform rod with length L = 640 mm and mass 240 g. (a) Calculate the rotational inertia of the pendulum about the pivot point. (b) What is the distance between the pivot point and the center of mass of the pendulum? (c) Calculate the period of oscillation
The pendulum in the figure consists of a uniform disk with radius r = 13.0 cm...
The pendulum in the figure consists of a uniform disk with radius r = 13.0 cm and mass 880 g attached to a uniform rod with length L = 610 mm and mass 290 g. (a)Calculate the rotational inertia of the pendulum about the pivot point. (b) What is the distance between the pivot point and the center of mass of the pendulum? (c)Calculate the period of oscillation.
a bicycle wheel with radius R,mass M,and moment of inertia I=3/4MR^2 is mounted inthe shop so...
a bicycle wheel with radius R,mass M,and moment of inertia I=3/4MR^2 is mounted inthe shop so that it can freely turn around a fixed horizontal axis. Someone walking by accidently drops a glob(mass m) of rubber sement on the tire at a point that is a horizontal distance 1/2 R from the wheel's center. the gob has a vertical speed |v| just before it hits. What is the magnitude |w| of the wheel's angular velocity just after the glob hits...
7. A 500 kg car goes around turn in the road that has a radius of...
7. A 500 kg car goes around turn in the road that has a radius of curvature of 5 m. The car is traveling at a constant speed of 10 m/s. (i) What is the centripetal force required to keep the car from sliding out as it goes around the turn? (ii) What must be the coefficient of friction between the tires of the car and the road in order for the car to not sliding as it goes around...
1. Find the moment of inertia of a stick of length 4 m and mass 10...
1. Find the moment of inertia of a stick of length 4 m and mass 10 kg that is rotated about an axis that is 30 % from the left end of the stick. Hint do the integration of r^2 dm 2. A 123 kg merry go round with a 5 m radius rotates on a vertical axis. If I push at the edge with a force of 188 N, find the angular acceleration. The moment of inertia of disk...
A merry-go-round with a a radius of R = 1.84 m and moment of inertia I...
A merry-go-round with a a radius of R = 1.84 m and moment of inertia I = 206 kg-m2 is spinning with an initial angular speed of ? = 1.54 rad/s in the counter clockwise direection when viewed from above. A person with mass m = 66 kg and velocity v = 4.5 m/s runs on a path tangent to the merry-go-round. Once at the merry-go-round the person jumps on and holds on to the rim of the merry-go-round. 1)...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT