Question

Question 1: Photoelectric effect. An aluminum plate is lit by 30 watt blue light ( =...

Question 1: Photoelectric effect.
An aluminum plate is lit by 30 watt blue light ( = 340nm). The aluminum extraction work is 2 eV.
a. What will be the maximum speed of the ejected electrons?
b. If only 1% of the ejected electrons go to the detector, how much will it detect per second?
c. What is the stopping potential?
d. What maximum wavelength can the photoelectric effect produce on aluminum?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A) Within a photoelectric effect experiment, light shines on the surface of a metal plate and...
A) Within a photoelectric effect experiment, light shines on the surface of a metal plate and the stopping voltage is measured. a) If the light intensity is decreased, what happens to the stopping voltage? decreases increases     stays the same not enough information b) If the light intensity is decreased, what happens to the number of electrons emitted? decreases increases     stays the same not enough information c) If the light wavelength is decreased, what happens to the KE of the emitted...
What would be the maximum speed of the electrons ejected from a metal plate whose extraction...
What would be the maximum speed of the electrons ejected from a metal plate whose extraction work is 9 eV if it were lit by a light having a wavelength of 100 nm?
Light of wavelength 235 nm is incident on Magnesium in a photoelectric effect experiment. The work...
Light of wavelength 235 nm is incident on Magnesium in a photoelectric effect experiment. The work function of Magnesium is 3.68 eV. (a) What is the maximum kinetic energy of the emitted electrons, in eV? (b)What is the maximum velocity of the emitted electrons, in m/s? (c) What is the stopping potential, in Volts, that results in no collected photoelectrons? (d) Light of wavelength 235 nm is now incident on lead (work function 5.40 eV). What is the maximum kinetic...
The photoelectric work function of potassium is 2.1 eV. If light that has a wavelength of...
The photoelectric work function of potassium is 2.1 eV. If light that has a wavelength of 180 nm falls on potassium Part A: Find the stopping potential for light of this wavelength (V = ______ units) Part B: Find the kinetic energy, in electron volts, of the most energetic electrons ejected (K = ______ eV) Part C: Find the speeds of these electrons (vmax = ______ units)
Light of wavelength 342 nm shines on a metal surface and the stopping potential V0 in...
Light of wavelength 342 nm shines on a metal surface and the stopping potential V0 in a photoelectric experiment is observed to be 0.850 V. a) What is the work function φ of the metal? (eV) b) What is the maximum kinetic energy of the ejected electrons (in Joules)? c) What is the longest wavelength light that will still allow electrons to escape the metal?(nm)
In a photoelectric experiment, the work function of the material from which electrons are ejected equals...
In a photoelectric experiment, the work function of the material from which electrons are ejected equals 2.5eV. What is the maximum wavelength of light for which electrons are ejected from this material and what stopping voltage is required when light, having a wave lengthof 3.5x 10-7m, is used with this material(if one may take for Planck’s constant, h = 6.63 x 10−34Js, for the speed of light, c = 3.0 x 108m/s, and noting that:1 eV = 1.6 x 10−19J)?
A) You are setting up a photoelectric effect experiment with an unknown metal surface. Which of...
A) You are setting up a photoelectric effect experiment with an unknown metal surface. Which of the following wavelengths of light is most likely to cause electrons to be ejected from the surface? 700 nm they are all equally likely to work 500 nm 300 nm 900 nm B) Suppose you try the experiment with the light you chose in the previous question, and you get ejected electrons with a maximum kinetic energy of 2.5 eV. What will happen if...
a) A photon of wavelength 43 nm is incident upon a metal in a photoelectric apparatus....
a) A photon of wavelength 43 nm is incident upon a metal in a photoelectric apparatus. A stopping voltage of 21 V was obtained. What is the threshold frequency of the metal? (format of a.b x 10cdHz) b) Light with a frequency of 5.00 x 1014 Hz illuminates a photoelectric surface that has a work function of 2.10 x 10-19 J. What is the maximum kinetic energy of the emitted photoelectrons? (format of a.bc x 10-de J ) c) Light...
Problem: Light strikes a sodium surface, causing photoelectric emission. The stopping potential for the ejected electrons...
Problem: Light strikes a sodium surface, causing photoelectric emission. The stopping potential for the ejected electrons is 5.0V, and the work function of sodium is 2.2eV. What is the wavelength of the incident light? Give your answer in nanometers.​
An experimental is conducted to investigate the photoelectric effect with a Barium plate. When the wavelength...
An experimental is conducted to investigate the photoelectric effect with a Barium plate. When the wavelength of the incident light is less than 500.0 nm the plate starts emitting electrons. a) what is the threshold frequency of the Barium plate? b) what is the work function of Barium? The wavelength of the incident light is charged to 300.0 nm. c) what is the kinetic energy of the photoelectrons?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT