Question

Yet another bizarre baton is created by taking four identical balls, each with mass 0.261 kg,...

Yet another bizarre baton is created by taking four identical balls, each with mass 0.261 kg, and fixing them as before except that one of the rods has a length of 1.18 m and the other has a length of 1.58 m.

(a) Calculate the moment of inertia of this baton when oriented as shown in the figure.
I =  kg · m2

(b) Calculate the moment of inertia of this baton when oriented as shown in the figure, with the shorter rod vertical.
I =  kg · m2

(c) Calculate the moment of inertia of this baton when oriented as shown in the figure, but with longer rod vertical.
I =  kg · m2

Homework Answers

Answer #1

the moment of inertia of this baton when oriented is

I = m1 r1^2 + m2 r2^2 + m3 r3^2 + m4 r4^2

= m ( 2 r1^2 + 2 r2^2)

=2m ( r1^2 + r2^2)

= 2(0.261) ((1.18/2)^2 + (1.58/2)^2)

=0.5074 kg m^2

(b)the moment of inertia of this baton when oriented as shown in the figure, with the shorter rod vertical.

I = 2 m ( r2^2)

= 2 (0.261) ( 1.58/2)^2

=0.3257802 kg m^2

(c)

the moment of inertia of this baton when oriented as shown in the figure, but with longer rod vertical.

I = 2 m ( r2^2)

= 2 (0.261) ( 1.18/2)^2

=0.181 kg m^2

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Three small balls of mass 3.6 kg, 1.7 kg, and 3.8 kg are connected by light...
Three small balls of mass 3.6 kg, 1.7 kg, and 3.8 kg are connected by light rods laying along the y-axis. The rod connecting the first and second balls is 4.1 m long and the rod connecting the second and third balls is 2.5 m. The entire system rotates around the x-axis, which is between the first and second balls and a distance 2.1 m from the first ball, at a rotational speed 1.8 s-1 (a) What is the moment...
Three small balls of mass 4.9 kg, 1.7 kg, and 3.3 kg are connected by light...
Three small balls of mass 4.9 kg, 1.7 kg, and 3.3 kg are connected by light rods laying along the y-axis. The rod connecting the first and second balls is 4.8 m long and the rod connecting the second and third balls is 1.5 m. The entire system rotates around the x-axis, which is between the first and second balls and a distance 3 m from the first ball, at a rotational speed 1.6 s-1 What is the moment of...
The drawing shows two identical systems of objects; each consists of the same three small balls...
The drawing shows two identical systems of objects; each consists of the same three small balls connected by massless rods. In both systems the axis is perpendicular to the page, but it is located at a different place, as shown. The same force of magnitude F is applied to the same ball in each system (see the drawing). The masses of the balls are m1 = 8.2 kg, m2 = 5.3 kg, and m3 = 7.7 kg. The magnitude of...
Four straight rods are each 1.0m, with masses 1.0 kg, 2.0kg, 3.0 kg and 4.0kg. The...
Four straight rods are each 1.0m, with masses 1.0 kg, 2.0kg, 3.0 kg and 4.0kg. The rods form a square in the xy-plane so that the 1.0kg rod is placed along the x-axis with its left end at the origin. The 2.0kg rod is placed along the y-axis with its lower end in the origin. The 3.0kg rod is parallell with the x-axis. a) Find the square's center of mass (draw a figure). b) Calculate the square's moment of inertia...
A rod of length l=1.1m and mass M= 5.5kg joins two particles with masses m1 =4.8kg...
A rod of length l=1.1m and mass M= 5.5kg joins two particles with masses m1 =4.8kg and m2 = 2.8kg, at its ends. The combination rotates in the xy-plane about a pivot through the center of the rod with the linear speed of the masses of v= 3.5 m/s. (Moment of inertia of a uniform rod rotating about its center of mass I= 1 12 M l2 ) angularmomentum a) Calculate the total moment of inertia of the system I...
A rod of length l=2.2m and mass M= 9.7kg joins two particles with masses m1 =12.9kg...
A rod of length l=2.2m and mass M= 9.7kg joins two particles with masses m1 =12.9kg and m2 = 5.0kg, at its ends. The combination rotates in the xy-plane about a pivot through the center of the rod with the linear speed of the masses of v= 12.9 m/s. (Moment of inertia of a uniform rod rotating about its center of mass I= 1 12 M l2 ) a) Calculate the total moment of inertia of the system I =...
Moment of Inertia To find the moment of inertia of different objects and to observe the...
Moment of Inertia To find the moment of inertia of different objects and to observe the changes in angular acceleration relative to changing moments of inertia. To also learn how to use calipers in making precise measurements The momentum of inertia of an object is calculated as I=∑mr^2 If the object in question rotates around a central point, then it can be considered a "point mass", and its moment of inertia is simply,  I=mr^2 where r is from the central point...
Two 2.4 kg balls are attached to the ends of a thin rod of negligible mass,...
Two 2.4 kg balls are attached to the ends of a thin rod of negligible mass, 54 cm in length. The rod is free to rotate in a vertical plane about a horizontal axis through its center. With the rod initially horizontal as shown, a 0.33 kg wad of wet putty drops onto one of the balls with a speed of 3.7 m/sec and sticks to it. 1)What is the ratio of the magnitude of angular momentum of the entire...
A rotating cylindrical rod of mass m=4 Kg and length l=1 meter is connected to a...
A rotating cylindrical rod of mass m=4 Kg and length l=1 meter is connected to a falling weight of 300 grams with a 2 meters string (Maximum distance covered by the falling weight). The distance from the wound string to the axis of rotation is 300 mm. The time taken by the falling weight to halfway is 2 seconds and to the bottom is 2.7 seconds. Change of angular momentum in the spinning rod Mass (Kg) Moment of Inertial of...
A steel beam of mass m= 5 kg and length L=1.50 m is attached to a...
A steel beam of mass m= 5 kg and length L=1.50 m is attached to a fixed point P about which it can rotate without friction. Initicently beam is held at an angle of 30 degree which the vertical ; as shown in the picture. The moment of inertia of the beam about tis center of mass is Mb^2/12. Now the beam is released first rest. a) calculate the touque of weight if the beam about prvot P at the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT