Question

a) The energy required to remove an electron from a surface of a solid element is...

a) The energy required to remove an electron from a surface of a solid element is called its work function.
If a minimum of 423.6 kJ/mol is required to remove electrons from C atoms on a surface of a sample of carbon, what is the maximum wavelength (λmax) of light that can remove an electron from a C atom on this surface?

b) If the same carbon surface is irradiated with light of λ=225.9 nm, what is the maximum kinetic energy that a released electron could have?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
. Determine the longest wavelength of light required to remove an electron from a sample of...
. Determine the longest wavelength of light required to remove an electron from a sample of potassium metal, if the binding energy for an electron in K is 1.76 × 103 kJ/mol.
23.   Photons and Energy      A. A certain source emits radiation of wavelength 500.0 nm. Determine...
23.   Photons and Energy      A. A certain source emits radiation of wavelength 500.0 nm. Determine its frequency. Calculate the energy associated with this photon at 500.0 nm.    B. If it takes 3.36 x 10-19 J of energy to eject an electron from the surface of a certain metal, Calculate the frequency of this energy and the longest possible wavelength in nm.       C. Ionization energy is the energy required to remove an electron from an atom in...
Calculate the energy, frequency, and wavelength required to remove the electron from the H atom, if...
Calculate the energy, frequency, and wavelength required to remove the electron from the H atom, if the electron is in the n=2 energy level. Is the transition visible?
It requires a photon with a minimum energy of 4.41 ✕ 10-19 J to emit electrons...
It requires a photon with a minimum energy of 4.41 ✕ 10-19 J to emit electrons from sodium metal. c) If sodium is irradiated with light of 389 nm, what is the maximum possible kinetic energy of the emitted electrons?(answer in J) (d) What is the maximum number of electrons that can be freed by a burst of light (λ = 389 nm) whose total energy is 1.20 µJ? (answer in electrons)
In two-photon ionization spectroscopy, the combined energies carried by two different photons are used to remove...
In two-photon ionization spectroscopy, the combined energies carried by two different photons are used to remove an electron from an atom or molecule. In such an experiment a aluminum atom in the gas phase is to be ionized by two different light beams, one of which has wavelength 395 nm. What is the maximum wavelength for the second beam that will cause two-photon ionization? Hint: The ionization energy of aluminum is 577.6 kJ/mol nm?
The minimum frequency of light needed to eject electrons from a metal is called the threshold...
The minimum frequency of light needed to eject electrons from a metal is called the threshold frequency, ν0. Find the minimum energy needed to eject electrons from a metal with a threshold frequency of 3.35 × 1014 s–1. With what maximum kinetic energy will electrons be ejected when this metal is exposed to light with a wavelength of λ = 265 nm?
The minimum frequency of light needed to eject electrons from a metal is called the threshold...
The minimum frequency of light needed to eject electrons from a metal is called the threshold frequency, ν0. Find the minimum energy needed to eject electrons from a metal with a threshold frequency of 2.05 × 1014 s–1. With what maximum kinetic energy will electrons be ejected when this metal is exposed to light with a wavelength of λ = 265 nm?
What is the maximum kinetic energy of an ejected electron if magnesium metal is irradiated with...
What is the maximum kinetic energy of an ejected electron if magnesium metal is irradiated with 294 nm light? The threshold wave length for a magnesium metal surface is 339nm.
It takes 486.0 kJ/mol to convert sodium atoms to Na+ ions. Sodium atoms absorb and emit...
It takes 486.0 kJ/mol to convert sodium atoms to Na+ ions. Sodium atoms absorb and emit light of wavelengths 589.6 and 590.0 nm. Calculate the energy of the 589.6 nm light in kilojoules per mole. 15. If a sodium atom has already absorbed a 590.0 nm photon, what is the wavelength of the second photon a sodium atom must absorb to remove an electron?
When light with a wavelength of 258 nm is incident on a certain metal surface, electrons...
When light with a wavelength of 258 nm is incident on a certain metal surface, electrons are ejected with a maximum kinetic energy of 3.02 × 10-19 J. Determine the wavelength (in nm) of light that should be used to double the maximum kinetic energy of the electrons ejected from this surface.