Question

A single slit, 2000 nm wide, forms a diffraction pattern when illuminated by monochromatic light of...

A single slit, 2000 nm wide, forms a diffraction pattern when illuminated by monochromatic light of 520-nm wavelength. A. What is the largest angle from the central maximum at which the intensity of the light is zero? B. Find the angle at which the fourth minimum of the pattern occurs away from the central maximum

Homework Answers

Answer #1

Solution :

Given :

d = 2000 nm = 2000 x 10-9 m

= 520 nm = 520 x 10-9 m

.

According to Bragg's Equation :

For largest angle : = 90o

Thus : n = d / = (2000 x 10-9 m) / (520 x 10-9 m) = 3.846 3

.

Therefore, The largest angle will be given as :

(3)(520 x 10-9 m) / (2000 x 10-9 m) = 0.78

.

Therefore: Largest angle from the central maximum at which the intensity is zero will be 51.26o.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Monochromatic light of 600 nm incident on a 0.2mm wide single slit. A diffraction pattern is...
Monochromatic light of 600 nm incident on a 0.2mm wide single slit. A diffraction pattern is appeared on a screen 130cm away from the single slit. Calculate the fractional intensity I/Imax at a point on the screen 5 mm from the center of the principal maximum.
Monochromatic light of 600 nm incident on a 0.2mm wide single slit. A diffraction pattern is...
Monochromatic light of 600 nm incident on a 0.2mm wide single slit. A diffraction pattern is appeared on a screen 130cm away from the single slit. Calculate the fractional intensity I/Imax at a point on the screen 5 mm from the center of the principal maximum.
1. A slit 1.24 mm wide is illuminated by light of wavelength 530 nm . The...
1. A slit 1.24 mm wide is illuminated by light of wavelength 530 nm . The diffraction pattern is seen on a screen 2.19 m away Find the distance between the first two diffraction minima on the same side of the central maximum in meters. 2. Monochromatic light with wavelength 539 nm fall on a slit with width 0.016 mm wide. The distance from the slit to a screen is 3.18 m. Consider a point on the screen 1.19cm from...
Light of wavelength 492.0 nm passes through a 0.10-mm wide slit and forms a diffraction pattern...
Light of wavelength 492.0 nm passes through a 0.10-mm wide slit and forms a diffraction pattern on a screen 2.6 m away from the slit. Calculate the distance between the first and the third minima on the same side of the central maximum.
A single slit of width .25 mm is illuminated with monochromatic light of wavelength 505nm, and...
A single slit of width .25 mm is illuminated with monochromatic light of wavelength 505nm, and a diffraction pattern is formed on a screen 2.2m away from the slit. What is the width of the central maximum? If the width were increased, how would this change affect the size of the central maximum?
1. monochromatic light of wavelength 540 nm from a source passes through a slit that is...
1. monochromatic light of wavelength 540 nm from a source passes through a slit that is 0.03mm wide. What is the width of the central bright fringe on the diffraction pattern formed on a screen placed at a distance of 2.00 m away from the slit? 2. Light of wavelength 500 nm is incident on a single slit of width 0.02 mm to produce a diffraction pattern with intensity 4.00×10^-4 W/m^2 at the center of a screen placed far away...
A beam of monochromatic light is incident on a single slit of width 0.640 mm. A...
A beam of monochromatic light is incident on a single slit of width 0.640 mm. A diffraction pattern forms on a wall 1.35 m beyond the slit. The distance between the positions of zero intensity on both sides of the central maximum is 2.04 mm. Calculate the wavelength of the light.
Monochromatic light from a distant source is incident on a slit 0.750mm wide. On a screen...
Monochromatic light from a distant source is incident on a slit 0.750mm wide. On a screen a screen 2m away, the distance from the central maximum of the diffraction pattern to the first minimum is measured to be 1.35 mm. Calculate the wavelength of the light. (Diagram: 2 right triangles, path difference, angle theta, y, L, a....)
Monochromatic light from a distant source is incident on a slit 0.75 mm wide. On a....
Monochromatic light from a distant source is incident on a slit 0.75 mm wide. On a. Screen 2.00 m away, the distance from the central maximum of the diffraction pattern to the first minimum is measured to be 1.35 mm. Calculate the wavelength of the light.
Monochromatic light of wavelength λ = 595 nm from a distant source passes through a slit...
Monochromatic light of wavelength λ = 595 nm from a distant source passes through a slit 0.460 mm wide. The diffraction pattern is observed on a screen 4.00 m from the slit. In terms of the intensity I0 at the peak of the central maximum, what is the intensity of the light at the screen the following distances from the center of the central maximum? a) 1.00mm b) 3.00mm c) 5.00 mm
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT