Question

A cylinder with a piston contains 0.100 mol of nitrogen at
2.00×10^{5} Pa and 320 K . The nitrogen may be treated as
an ideal gas. The gas is first compressed isobarically to half its
original volume. It then expands adiabatically back to its original
volume, and finally it is heated isochorically to its original
pressure.

**A) Find the work done by the gas during the initial
compression**

**B) Find the heat added to the gas during the initial
compression**

**C) Find internal- energy change of the gas during the
initial compression**

Answer #1

A cylinder with a piston contains 0.160 mol of nitrogen at
1.80×105 Pa and 310 K . The nitrogen may be treated as an ideal
gas. The gas is first compressed isobarically to half its original
volume. It then expands adiabatically back to its original volume,
and finally it is heated isochorically to its original
pressure.
a.) Find the work done by the gas during the initial
compression.
b.)Find the heat added to the gas during the initial
compression.
c.)Find...

A cylinder with a piston contains 0.300 molmol of oxygen at
2.50×105 PaPa and 350 KK . The oxygen may be treated as
an ideal gas. The gas first expands isobarically to twice its
original volume. It is then compressed isothermally back to its
original volume, and finally it is cooled isochorically to its
original pressure.
Figure
of 0
Part A
Part complete
Find the work done by the gas during the initial expansion.
--
SubmitPrevious AnswersRequest Answer
Incorrect; Try...

A cylinder contains an ideal gas at the temperature of 300 K and
is closed by a movable piston. The gas, which is initially at a
pressure of 3 atm occupying a volume of 30 L, expands isothermally
to a volume of 80 L. The gas is then compressed isobarically,
returning to its initial volume of 30 L. Calculate the work done by
gas: a) in isothermal expansion; b) in isobaric compression, c) in
the whole process; and d) Calculate...

A cylinder containing 3.0 moles of a monatomic, ideal gas begins
at a pressure of
2.0 × 105 Pa, with a volume of 0.0365 m3. The
gas then goes through the following three processes, which comprise
a thermal cycle:
The gas is expanded isothermally, to twice its original
volume.
The gas is cooled isobarically, back to its original
volume.
The gas is heated isochorically, up to its original
pressure.
(a) Find the initial temperature of the gas, in
Kelvin.
(b)...

A cylinder with a moveable piston on top, free to move up and
down, contains one mole of an ideal gas initially at a temperature
of Ti = 3.8°C. The cylinder is heated at a constant pressure of
1.00 atm, and it expands to seven times its original volume. (a)
Calculate the new temperature Tf of the gas (in K). (No Response) K
(b) Calculate the work done (in kJ) on the gas during the
expansion.

A 0.50 L container is initially filled with Nitrogen gas at STP.
The gas expands against a piston adiabatically to a volume of 50.0%
larger than the original volume. The Nitrogen may be treated as an
ideal gas with ?=7/5.
a) Calculate the final
temperature and pressure.
b) What is the work
done?
c) Sketch a pV-diagram
for this process. On this diagram also draw the isotherms for the
initial and final temperatures.

ir is mostly a mixture of diatomic oxygen and nitrogen; treat it
as an ideal gas with
?=1.40,
?v =20.8J⋅mol−1⋅K−1.
Theuniversalgasconstantis?=8.315J⋅mol−1 K−1. The compression
ratio of a diesel engine is 15:1, meaning that air in the
cylinders is compressed to 1/15 of its initial volume. If the
initial pressure is 1.01 × 105 Pa and the initial temperature is
300 K, find:
i) The final temperature after adiabatic compression.
ii) The final pressure after adiabatic compression.
iii) How much work...

A vessel with a movable piston contains 1.90 mol of an ideal gas
with initial pressure
Pi = 2.03 ✕ 105 Pa,
initial volume
Vi = 1.00 ✕ 10−2
m3,
and initial temperature
Ti = 128 K.
(a) What is the work done on the gas during a constant-pressure
compression, after which the final volume of the gas is 2.50
L?
J
(b) What is the work done on the gas during an isothermal
compression, after which the final pressure...

n = 2.58 mol of Hydrogen gas is initially at T = 376 K
temperature and pi = 1.88×105 Pa pressure. The gas is then
reversibly and isothermally compressed until its pressure reaches
pf = 8.78×105 Pa. What is the volume of the gas at the end of the
compression process? What would be the temperature of the gas, if
the gas was allowed to adiabatically expand back to its original
pressure?

Constant amount of ideal gas is kept inside a cylinder by a
piston. Then the gas expands isobarically. Compare the initial (i)
and the final (f) physical quantities of the gas to each other.
The internal energy Uf is ... Ui.
The temperature Tf is ... Ti.
The volume Vf is ... Vi.
The entropy Sf is ... Si.
The pressure pf is ... pi.

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 7 minutes ago

asked 10 minutes ago

asked 37 minutes ago

asked 38 minutes ago

asked 57 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago