Question

You want to cool 0.2 kg of coffee, initially at temperature Th = 80° C, with...

You want to cool 0.2 kg of coffee, initially at temperature Th = 80° C, with ice initially at Tc = 0° C. The specific heat of ice is about 2108 J/kg K, and its latent heat of melting is about 334, 000 J/kg. You may take the specific heats of liquid water and coffee to be the same: 4187 J/kg K.
A) Assume the coffee and ice form a closed system. You want them to equilibrate at 40° C. How much ice should you add?
B) Suppose you add that ice, and find that after 20 minutes it equilibrates with the coffee at 30° C rather than 40° C. How much power does the coffee/ice system deliver to its surroundings, on average

Homework Answers

Answer #1

Please ask your doubts or queries in the comment section below.

Please kindly upvote if you are satisfied with the solution.

Thank you.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
You initially have 2.0kg of ice in 3.0kg of water at 0°C. How much total heat...
You initially have 2.0kg of ice in 3.0kg of water at 0°C. How much total heat must be added in order to convert 2.0kg of the entire sample to steam at 100°C? Separately determine the amount of heat for each stage of this process.    Specific heat capacities (J/kg∙K) Latent heats (J/kg) c ice = 2090 Lf = 33.5∙10^4 c water = 4186   Lv = 22.6∙10^5 c steam = 2010
You decide to put a 40.0 g ice cube at -10.0°C into a well insulated coffee...
You decide to put a 40.0 g ice cube at -10.0°C into a well insulated coffee cup (of negligible heat capacity) containing  of water at 5.0°C. When equilibrium is reached, how much of the ice will have melted? The specific heat of ice is 2090 J/kg ∙ K, that of water is 4186 J/kg ∙ K, and the latent heat of fusion of water is 33.5 × 104 J/kg.
At 0°C the latent heat of the ice<-->liquid transition is 3.34 × 105 J/kg. Clean water...
At 0°C the latent heat of the ice<-->liquid transition is 3.34 × 105 J/kg. Clean water can be cooled a few degrees below 0°C without freezing on an ordinary time-scale, even though ice would have lower G. This non-equilibrium liquid state typically remains until some disturbance (e.g. a bubble) triggers the freezing. 1) What is the entropy difference between 4 kg of liquid water and 4 kg of ice at 0°C? 2) The specific heat of liquid water is cpw=...
A 2.5 kg metallic block with an initial temperature of 80°C is placed in a styrofoam...
A 2.5 kg metallic block with an initial temperature of 80°C is placed in a styrofoam cup containing 0.1 kg of ice at -15°C. Assuming that no heat escapes from the cup what is the final temperature of the metallic block? The specific heat of the metal is 480 J/kg ∙ K, specific heat of ice is 2090 J/kg ∙ K, the latent heat of fusion of water is 3.33 × 105 J/kg, and the specific heat of water is...
Q3. A cube with side lengths of 2.91 cm is heated to a constant temperature of...
Q3. A cube with side lengths of 2.91 cm is heated to a constant temperature of 720 ◦C at the focal point inside of a parabolic reflector. This has the effect of directing all of the cube’s radiant energy toward a 3.92 kg pack of ice that is initially at −19.0 ◦C. If the emissivity of the cube is 0.466, how long does it take for the ice to completely vaporize? Use the following numbers in your calculation: • The...
You pour 200 g hot coffee at 78.7°C and some cold cream at 7.50°C to a...
You pour 200 g hot coffee at 78.7°C and some cold cream at 7.50°C to a 115-g cup that is initially at a temperature of 22.0°C. The cup, coffee, and cream reach an equilibrium temperature of 62.0°C. The material of the cup has a specific heat of 0.2604 kcal/(kg · °C) and the specific heat of both the coffee and cream is 1.00 kcal/(kg · C). If no heat is lost to the surroundings or gained from the surroundings, how...
you pour 130 g hot coffee at 78.7°C and some cold cream at 7.50°C to a...
you pour 130 g hot coffee at 78.7°C and some cold cream at 7.50°C to a 115-g cup that is initially at a temperature of 22.0°C. The cup, coffee, and cream reach an equilibrium temperature of 61.0°C. The material of the cup has a specific heat of 0.2604 kcal/(kg · °C) and the specific heat of both the coffee and cream is 1.00 kcal/(kg · C). If no heat is lost to the surroundings or gained from the surroundings, how...
An 11 g ice cube at -12˚C is put into a Thermos flask containing 145 cm3...
An 11 g ice cube at -12˚C is put into a Thermos flask containing 145 cm3 of water at 24˚C. By how much has the entropy of the cube-water system changed when a final equilibrium state is reached? The specific heat of ice is 2200 J/kg K and that of liquid water is 4187 J/kg K. The heat of fusion of water is 333 × 103 J/kg. and A 6.0 g ice cube at -21˚C is put into a Thermos...
If you pour 0.600 kg of 20.0ºC water onto a 1.20-kg block of ice (which is...
If you pour 0.600 kg of 20.0ºC water onto a 1.20-kg block of ice (which is initially at 0 ºC), what is the final temperature? You may assume that the water cools so rapidly that effects of the surroundings are negligible. The specific heat of water is 4 186 J/(kg * ºC), the specific heat of ice is 2 090 J/(kg * ºC), and the heat of fusion of water is 334 x103 J/kg.
You wish to cool a 1.95 kg block of brass initially at 92.0°C to a temperature...
You wish to cool a 1.95 kg block of brass initially at 92.0°C to a temperature of 41.0°C by placing it in a container of water initially at 32.0°C. Determine the volume (in L) of the liquid needed in order to accomplish this task without boiling. The density and specific heat of water are respectively 1,000 kg/m3 and 4,186 J/(kg · °C), and the specific heat of brass is 380 J/(kg · °C).
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT