Question

a car is initially (at t=0s) moving with a velocity of -13.3 m/s with a uniform...

a car is initially (at t=0s) moving with a velocity of -13.3 m/s with a uniform acceleration, of +7.34m/s^2, along the horizontal line.

1.) at what time does the car stop.

2.) After traveling for the first 15.6s

A.)what is the car's displacement

B.) what is the car's velocity?

C.) what is the distance the car has traveled?

3.) what is the car's velocity after having a displacement of

A.)+159m

B.)-159m

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A car initially traveling with a velocity if 12 m/s accelerates at a constant rate of...
A car initially traveling with a velocity if 12 m/s accelerates at a constant rate of 2.5 m/s^2 for 2 seconds. A) will this car cover more or less ground in 2 seconds than a second car initially moving at 12m/s but no acceleration ? B) how far is this car moving after 2seconds ? C) how far has it traveled during the 2 second interval ?
A car is initially at rest on a straight road. The histogram below shows the car's...
A car is initially at rest on a straight road. The histogram below shows the car's acceleration along that road as a function of time. Link to histogram https://s4.lite.msu.edu/cgi-bin/plot.png?file=modykrun_msu_1400092982_11970255_plot.data 1) Calculate the speed of the car at t = 4 s. 2) Calculate the distance traveled during the first 5 s. 3) Calculate the distance traveled from t=10 s to t=13 s. 4) Calculatethe car's average speed from t = 5 s to t=9 s.
A car initially traveling at 29.2 m/s undergoes a constant negative acceleration of magnitude 2.00 m/s2...
A car initially traveling at 29.2 m/s undergoes a constant negative acceleration of magnitude 2.00 m/s2 after its brakes are applied (a) How many revolutions does each tire make before the car comes to a stop, assuming the car does not skid and the tires have radii of 0.300 m? (b) What is the angular speed of the wheels when the car has traveled half the total distance? rad/s
A car initially traveling at 25.7 m/s undergoes a constant negative acceleration of magnitude 1.80 m/s2...
A car initially traveling at 25.7 m/s undergoes a constant negative acceleration of magnitude 1.80 m/s2 after its brakes are applied. (a) How many revolutions does each tire make before the car comes to a stop, assuming the car does not skid and the tires have radii of 0.320 m? rev (b) What is the angular speed of the wheels when the car has traveled half the total distance? rad/s
A car initially traveling at 25.9 m/s undergoes a constant negative acceleration of magnitude 1.40 m/s2...
A car initially traveling at 25.9 m/s undergoes a constant negative acceleration of magnitude 1.40 m/s2 after its brakes are applied. (a) How many revolutions does each tire make before the car comes to a stop, assuming the car does not skid and the tires have radii of 0.330 m? rev (b) What is the angular speed of the wheels when the car has traveled half the total distance? ______rad/s
A car initially traveling at 25.7 m/s undergoes a constant negative acceleration of magnitude 1.50 m/s2...
A car initially traveling at 25.7 m/s undergoes a constant negative acceleration of magnitude 1.50 m/s2 after its brakes are applied. (a) How many revolutions does each tire make before the car comes to a stop, assuming the car does not skid and the tires have radii of 0.350 m? (b) What is the angular speed of the wheels when the car has traveled half the total distance?
A car initially traveling at 28.2 m/s undergoes a constant negative acceleration of magnitude 2.00 m/s2...
A car initially traveling at 28.2 m/s undergoes a constant negative acceleration of magnitude 2.00 m/s2 after its brakes are applied. (a) How many revolutions does each tire make before the car comes to a stop, assuming the car does not skid and the tires have radii of 0.320m? Answer: 98.9 (b) What is the angular speed of the wheels when the car has traveled half the total distance? Answer: ?
A car has an initial velocity of -5 m/s and after traveling a displacement of -6.0...
A car has an initial velocity of -5 m/s and after traveling a displacement of -6.0 meters the object has a velocity of -4 m/s. What is the acceleration of the car?
a 1.5 kg car (1) initially moving at 4.0 m/s to the right collides with a...
a 1.5 kg car (1) initially moving at 4.0 m/s to the right collides with a 2.0 kg car (2) initially moving at 2.0 m/s to the left. After the inelastic collision, car 1 is moving to the left at 1.2 m/s A) What is the velocity and direction of car 2 after the collision? B) What is the change in total kinetic energy and the percentage of initial kinetic energy remaining after the collision?
A 1,240-kg car traveling initially with a speed of 25.0 m/s in an easterly direction crashes...
A 1,240-kg car traveling initially with a speed of 25.0 m/s in an easterly direction crashes into the rear end of a 8,700-kg truck moving in the same direction at 20.0 m/s (see figure below). The velocity of the car right after the collision is 18.0 m/s to the east. Two images depicting a before and after scenario of a car colliding with the back of a truck. Before: The car is moving at a velocity of +25.0 m/s. This...