Question

A pendulum is constructed of a small bob of mass m and a uniform rigid rod...

A pendulum is constructed of a small bob of mass m and a uniform rigid rod of length L and mass M. Find the frequency f = 1/T of small oscillations, and show that the result reduces correctly in the limits M → 0 and m → 0.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A pendulum consisting of a small bob of mass m at the end of an effectively...
A pendulum consisting of a small bob of mass m at the end of an effectively massless rigid rod of length L is set into motion by releasing its bob from a small angle theta 0 from the vertical. a) What maximum angular and linear speed does the pendulum achieve? Where in its path is this speed reached? b) What are the angular and linear oscillation frequencies of the pendulum [or what is its period].
Two pendulums are swinging. One is a uniform rigid rod with a length of "l" and...
Two pendulums are swinging. One is a uniform rigid rod with a length of "l" and the other is a simple pendulum of relative length "l". Both have the same mass "m". Both are pulled back to the same angle of Theta relative to vertical and released simultaneously. a) Which one will reach the bottom of the swing first? b)Given the values l=80cm, Theta=30 degrees, and m=.200kg, what will be the speed of each pendulum as it swings through the...
A simple pendulum is constructed from a string of negligible mass. A mass (bob) 0.91kg that...
A simple pendulum is constructed from a string of negligible mass. A mass (bob) 0.91kg that is essentially a point mass. The string length is 0.65m. The pendulum is started by being released from rest with an angle (respect to the vertical) of 5.87 degrees. Use g=9.81 m/s^2. a) the maximum amplitude (in degrees) of this motion b)Angular frequency (in rad/s) of this motion c) Period (in s) of this motion.
A uniform rod of length L and mass M is free to swing about an axis...
A uniform rod of length L and mass M is free to swing about an axis that is perpendicular to the rod. The axis is a distance x from the rod's center of mass. a) Find the period of oscillations for small angles as a function of L and x with appropriate constants. b) make a sketch of the period as a function of x. If you use a spread sheet you may assume that L=1.0 m, then your graph...
pendulum of mass m= 0.8 kg and length l=1 m is hanging from the ceiling. The...
pendulum of mass m= 0.8 kg and length l=1 m is hanging from the ceiling. The massless string of the pendulum is attached at point P. The bob of the pendulum is a uniform shell (very thin hollow sphere) of radius r=0.4 m, and the length l of the pendulum is measured from the center of the bob. A spring with spring constant k= 7 N/m is attached to the bob (center). The spring is relaxed when the bob is...
A simple pendulum is constructed from a bob of mass m = 120 g and a...
A simple pendulum is constructed from a bob of mass m = 120 g and a lightweight string of length ℓ = 1.10 m. What are the periods of oscillation for this pendulum in the following situations? (Give your answers to at least two decimal places.) (a) in a physics lab at sea level (b) in an elevator accelerating upward at 1.50 m/s2 (c) in an elevator accelerating downward at 1.50 m/s2 (d) in a school bus accelerating horizontally at...
A simple pendulum of length L and mass m is suspended in a car traveling with...
A simple pendulum of length L and mass m is suspended in a car traveling with angular velocity (w) around a circle of radius R. Find the equilibrium angle as a function of w and the frequency of small oscillations around the equilibrium point(s).
A thin, rigid, uniform rod has a mass of 1.40 kg and a length of 2.50...
A thin, rigid, uniform rod has a mass of 1.40 kg and a length of 2.50 m. (a) Find the moment of inertia of the rod relative to an axis that is perpendicular to the rod at one end. (b) Suppose all the mass of the rod were located at a single point. Determine the perpendicular distance of this point from the axis in part (a), such that this point particle has the same moment of inertia as the rod...
A uniform rod of mass M and length L is pivoted at one end. The rod...
A uniform rod of mass M and length L is pivoted at one end. The rod is left to freely rotate under the influence of its own weight. Find its angular acceleration α when it makes an angle 30° with the vertical axis. Solve for M=1 Kg, L=1 m, take g=10 m s-2. Hint: Find the center of mass for the rod, and calculate the torque, then apply Newton as τ= Ι·α 
A point object with mass 6 kg and a uniform rigid rod with mass 6 kg  and...
A point object with mass 6 kg and a uniform rigid rod with mass 6 kg  and length 11 meter are on a horizontal frictionless planar surface. Point object hits the rod vertically with velocity 8 m/s and sticks to the rod.   Part A Calculate the angular velocity ω about the center of mass just after the point object with mass m sticks to the rod. Part B Calculate the ratio of the lost energy to the initial kinetic energy of...