Question

Determine the minimum kinetic energy of an incident alpha particle that will initiate the following reaction:...

  1. Determine the minimum kinetic energy of an incident alpha particle that will initiate the following reaction:

14 7N + 4 2He −−> 17 8O + 1 1H

u=14. 003074 u=4.002603 u=16.999131 u=1.007825   

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Each alpha particle in a beam of alpha particles has a kinetic energy of 5.0 MeV....
Each alpha particle in a beam of alpha particles has a kinetic energy of 5.0 MeV. Through what potential difference would you have to accelerate these alpha particles in order that they would have enough energy so that if one is fired head-on at a gold nucleus it could reach a point 1.0x10^-14 m from the center of the nucleus? I know that the answer is delta V = 9e6 Volts I am struggling to get past KEi = 5.0...
What is the wavelength, in meters, of an alpha particle with a kinetic energy of 8.00•10^(-13)...
What is the wavelength, in meters, of an alpha particle with a kinetic energy of 8.00•10^(-13) J? (Mass of an alpha particle= 4.100150 AMU. 1 AMU = 1.67•10^(-27) kg)
Calculate the energy, in megaelectronvolts, released in the nuclear reaction 10 5B + 4 2He? 13...
Calculate the energy, in megaelectronvolts, released in the nuclear reaction 10 5B + 4 2He? 13 6C + 1 1H. The nuclidic masses are 10 5B = 10.01294u ; 4 2He = 4.002600u ; 13 6C = 13.00335u ; 1 1H = 1.007830u. Please Show work. Express your answer with the appropriate units.
an alpha particle is not represented by which of the following symbols:a, 4/2He, 4/2a, 1/1p
an alpha particle is not represented by which of the following symbols:a, 4/2He, 4/2a, 1/1p
An alpha particle with kinetic energy 13.5 MeVmakes a collision with lead nucleus, but it is...
An alpha particle with kinetic energy 13.5 MeVmakes a collision with lead nucleus, but it is not "aimed" at the center of the lead nucleus, and has an initial nonzero angular momentum (with respect to the stationary lead nucleus) of magnitude L=p0b, where p0 is the magnitude of the initial momentum of the alpha particle and b=1.20×10?12 m . (Assume that the lead nucleus remains stationary and that it may be treated as a point charge. The atomic number of...
The isotope; Americium-241 undergoes alpha decay, what is the approximate K.E of the alpha particle? Assume...
The isotope; Americium-241 undergoes alpha decay, what is the approximate K.E of the alpha particle? Assume nearly all the mass difference has been transformed into the kinetic energy of the alpha particle. The following are known masses: Americium-241, 241.056823 u; Neptunium-237, 237.048168 u; alpha particle, 4.002602 u.
An alpha particle with kinetic energy 11.5MeVmakes a collision with lead nucleus, but it is not...
An alpha particle with kinetic energy 11.5MeVmakes a collision with lead nucleus, but it is not "aimed" at the center of the lead nucleus, and has an initial nonzero angular momentum (with respect to the stationary lead nucleus) of magnitude L=p0b, where p0 is the magnitude of the initial momentum of the alpha particle and b=1.20�10?12m . (Assume that the lead nucleus remains stationary and that it may be treated as a point charge. The atomic number of lead is...
a) Consider an alpha-particle of mass mα and kinetic energy 4.7 MeV. Calculate its velocity and...
a) Consider an alpha-particle of mass mα and kinetic energy 4.7 MeV. Calculate its velocity and compare it to the speed of light. [2 marks] b) Calculate the de Broglie wavelength of the alpha-particle in a) and express your result in fm (femtometer).
Estimate the maximum kinetic energy given to the target nucleus when 6.7 MeV alpha particles are...
Estimate the maximum kinetic energy given to the target nucleus when 6.7 MeV alpha particles are incident on a lead foil. (Assume that the light alpha particle rebounds from the massive lead nucleus with a final momentum that is in magnitude nearly equal to its initial momentum.)
The following fusion reaction takes place in the Sun and furnishes much of its energy: H→...
The following fusion reaction takes place in the Sun and furnishes much of its energy: H→ He + e + Energy + 0 1 4 2 1 1 4 2 where e 0 +1 is a positron (positively charged electron). How much energy is released as 1.00 kg of hydrogen is consumed? The masses of 1H, 4He, and e 0 +1 are, respectively, 1.007825 a.u, 4.002 6004 a.u, and 0.000549 a.u, where atomic electrons are included in the first two...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT