Question

An infinite sheet of charge that has a surface charge density of 19 nC/m2 lies in...

An infinite sheet of charge that has a surface charge density of 19 nC/m2 lies in the yz plane, passes through the origin, and is at a potential of 0.7 kV . A long wire having a linear charge density of 91 nC/m lies parallel to the y axis and intersects the x axis at (4.2 m, 0, 0). What is the potential energy of a 1.9 nC charge placed at (1.1 m, 0, 0) ? The value of the permittivity of a vacuum is 8.8542 × 10?12 C 2 /N · m2 . Answer in units of J.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An infinite plane of surface charge density σ = 4.5 nC/m2 lies in the x =...
An infinite plane of surface charge density σ = 4.5 nC/m2 lies in the x = 0.00 m plane, and a second infinite plane of surface charge density σ = 4.50 nC/m2 lies in the x = 0.0200 m plane. Find: a. the electric field at (i) x = 0.0180 m and (ii) x = 0.0500 m b. the electric potential difference between the 2 planes.
An infinite plane in the xz plane carries a uniform surface charge density σ1 = 66...
An infinite plane in the xz plane carries a uniform surface charge density σ1 = 66 nC/m2. A second infinite plane carrying a uniform charge density σ2 = 32nC/m2 intersects the xz plane at the z axis and makes an angle of 30° with the xz plane as shown in the figure below. Find the electric field in the xy plane at each of the following locations. (a) x = 6 m, y = 2 m ?? N/C î +...
Consider an infinite plane of charge with a charge density of +10 µC/m2. Assume that this...
Consider an infinite plane of charge with a charge density of +10 µC/m2. Assume that this plane is on the y-and z-axes. That is, assume it is perpendicular to the x-axis and that it passes through the origin. a) What would be the electric field strength and direction at the point (5 m, 0, 0)? The strength is___________N/C The direction is Answer: -x, x, -y, y, -z, or z b) What would be the electric field strength and direction at...
Two infinitely long parallel wires have a uniform charge per unit length lambda and -lambda respectively....
Two infinitely long parallel wires have a uniform charge per unit length lambda and -lambda respectively. The wires are parallel with the z axis. The positively charged wire intersects the x axis at x = -a. and the negatively charged wire intersects the ,r axis at ,r = +a. (a) Choose the origin as the reference point where the potential is zero, and express the potential at an arbitrary point (x. y) in the xy plane in terms of .v,...
An infinitely large positively charged nonconducting sheet 1 has uniform surface charge density σ1 = +130...
An infinitely large positively charged nonconducting sheet 1 has uniform surface charge density σ1 = +130 nC/m2 and is located in the xz plane of a Cartesian coordinate system. An infinitely large positively charged nonconducting sheet 2 has uniform surface charge density σ2 = +90.0 nC/m2 and intersects the xz plane at the z axis, making an angle θ = 30∘ with sheet 1. Part A Determine the expression for the electric field in the region between the sheets for...
Two uniformly charged, infinite, nonconducting planes are parallel to a yz plane and positioned at x...
Two uniformly charged, infinite, nonconducting planes are parallel to a yz plane and positioned at x = -42 cm and x = +42 cm. The charge densities on the planes are -41 nC/m2 and +21 nC/m2, respectively. What is the magnitude of the potential difference between the origin and the point on the x axis at x = +84 cm? (Hint: Use Gauss' law for planar symmetry to determine the electric field in each region of space.)
Two uniformly charged, infinite, nonconducting planes are parallel to a yz plane and positioned at x...
Two uniformly charged, infinite, nonconducting planes are parallel to a yz plane and positioned at x = -44 cm and x = +44 cm. The charge densities on the planes are -55 nC/m2 and +17 nC/m2, respectively. What is the magnitude of the potential difference between the origin and the point on the x axis at x = +89 cm? (Hint: Use Gauss' law for planar symmetry to determine the electric field in each region of space.)
Two uniformly charged, infinite, nonconducting planes are parallel to a yz plane and positioned at x...
Two uniformly charged, infinite, nonconducting planes are parallel to a yz plane and positioned at x = -48 cm and x = +48 cm. The charge densities on the planes are -46 nC/m2 and +21 nC/m2, respectively. What is the magnitude of the potential difference between the origin and the point on the x axis at x = +87 cm? (Hint: Use Gauss' law for planar symmetry to determine the electric field in each region of space.)
An infinite line charge of uniform linear charge density lambda = -2.7 microC/m lies parallel to...
An infinite line charge of uniform linear charge density lambda = -2.7 microC/m lies parallel to the y axis at x = 0 m. A point charge of 3.5 microC is located at x = 1.0 m, y = 2.0 m. Find the x component of the electric field at x = 2.0 m, y = 1.5 m.
Determine the electric field intensity ans the electric flux density at the origin that results from...
Determine the electric field intensity ans the electric flux density at the origin that results from your five selected charged elements if the medium has a relative permittivity of 2.3 1)125 nC point charge located at (15,-1,-2) 2)Finite line with length charge density -12 nC/m extending from (-6,5,2) to (6,5,-2) 3)Infinite line with length charge density 5 nC/m at intersection of x = 4 and y = -1 4)Infinite plane at x = 10 with surface charge density -23 nC/m2...