Question

A 1.5 kg mass is lying on a frictionless table attached to a horizontal spring with...

A 1.5 kg mass is lying on a frictionless table attached to a horizontal spring with spring constant 2519 N/m. The spring is stretched a distance of 0.2 m. What is the force exerted on the mass in Newtons? Round your answer to the nearest 1 decimal place.   

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A block of mass m = 0.53 kg attached to a spring with force constant 119...
A block of mass m = 0.53 kg attached to a spring with force constant 119 N/m is free to move on a frictionless, horizontal surface as in the figure below. The block is released from rest after the spring is stretched a distance A = 0.13 m. (Indicate the direction with the sign of your answer. Assume that the positive direction is to the right.) The left end of a horizontal spring is attached to a vertical wall, and...
. A block of mass 2.00 kg is attached to a horizontal spring with a force...
. A block of mass 2.00 kg is attached to a horizontal spring with a force constant of 500 N/m. The spring is stretched 5.00 cm from its equilibrium position and released from rest. Use conservation of mechanical energy to determine the speed of the block as it returns to equilibrium (a) if the surface is frictionless (b) if the coefficient of kinetic friction between the block and the surface is 0.350
A block of mass m = 0.79 kg is attached to a spring with force constant...
A block of mass m = 0.79 kg is attached to a spring with force constant 123.0 N/m. The block is free to move on a frictionless, horizontal surface as shown in the figure. The block is released from rest after the spring is stretched a distance A = 0.10 m to the right. What is the potential energy of the spring/block system 0.25 s after releasing the block?
A 5.00 kg mass is attached to a spring on a horizontal frictionless surface. The elastic...
A 5.00 kg mass is attached to a spring on a horizontal frictionless surface. The elastic constant of the spring is 30.8 N/m. If the mass is 28.5 cm right (+) of the equilbrium point and moving right (+) at speed 6.1 m/s, what is the initial phase of the oscillation?
The mass m = 5.5 kg resting on a frictionless horizontal table is connected to a...
The mass m = 5.5 kg resting on a frictionless horizontal table is connected to a horizontal spring with stiffness constant k = 200 N/m . The mass is pulled a distance to the right so that the spring is stretched a distance x0 = 1.9 m initially, and then the mass is released from rest. B: Determine the kinetic energy when x=1/2 x0 C: Determine the maximum kinetic energy. D: Determine the maximum speed. E: At what position it...
A 0.24 kg mass is attached to a light spring with a force constant of 30.9...
A 0.24 kg mass is attached to a light spring with a force constant of 30.9 N/m and set into oscillation on a horizontal frictionless surface. If the spring is stretched 5.0 cm and released from rest, determine the following. (a) maximum speed of the oscillating mass b) speed of the oscillating mass when the spring is compressed 1.5 cm (c) speed of the oscillating mass as it passes the point 1.5 cm from the equilibrium position (d) value of...
A 2.10-kg frictionless block is attached to an ideal spring with force constant 355 N/mN/m. Initially...
A 2.10-kg frictionless block is attached to an ideal spring with force constant 355 N/mN/m. Initially the spring is neither stretched nor compressed, but the block is moving in the negative direction at 15.0 m/s A)Find the maximum acceleration of the block. Express your answer in meters per second squared. B)Find the maximum force the spring exerts on the block. Express your answer in newtons.
A 0.58 kg mass is attached to a light spring with a force constant of 31.9...
A 0.58 kg mass is attached to a light spring with a force constant of 31.9 N/m and set into oscillation on a horizontal frictionless surface. If the spring is stretched 5.0 cm and released from rest, determine the following. (a) maximum speed of the oscillating mass m/s (b) speed of the oscillating mass when the spring is compressed 1.5 cm m/s (c) speed of the oscillating mass as it passes the point 1.5 cm from the equilibrium position m/s...
A 0.68 kg mass is attached to a light spring with a force constant of 36.9...
A 0.68 kg mass is attached to a light spring with a force constant of 36.9 N/m and set into oscillation on a horizontal frictionless surface. If the spring is stretched 5.0 cm and released from rest, determine the following. (a) maximum speed of the oscillating mass    m/s (b) speed of the oscillating mass when the spring is compressed 1.5 cm    m/s (c) speed of the oscillating mass as it passes the point 1.5 cm from the equilibrium...
A 0.774 kg mass is on the end of a frictionless, horizontal spring. The spring is...
A 0.774 kg mass is on the end of a frictionless, horizontal spring. The spring is stretched 0.0566 m and released. It completes 12 oscillations in 4.62 s. Calculate: a) the oscillation frequency, b) the oscillation period, c) the spring force constant, d) the total mechanical energy of the oscillating spring, e) the maximum speed of the oscillating spring.