Question

Let's imagine a block on a sheet of ice, with negligible friction. The block has a...

Let's imagine a block on a sheet of ice, with negligible friction. The block has a mass of 5.00 kg. The block is currently moving to the right at 3.00 m/s. Let's say a rope is attached to this block, and it pulls horizontally on the block, also to the right, with a force of 12.0 N. With this force applied, the block moves a distance of 3.00 m to the right. How fast is the block moving at the end of this distance?

There is a lot of information in this problem, but let's think for a moment how to approach it.

We can use the work-kinetic energy theorem. That is, if we can find an initial kinetic energy, and find the work, we can then solve for the final kinetic energy. Knowing the final kinetic energy, we can find the final speed.

Let's first find the initial kinetic energy. What is the kinetic energy (in J) of the block when it is moving at 3.00 m/s?


Next, let's calculate the work (in J) done on the block by the rope.

J

Let's continue analyzing the example from the previous step.

Using the initial kinetic energy and work found in the previous step, what is the final kinetic energy (in J) of the block, after it has moved the 3.00 m distance?

J

Now that we have the final kinetic energy, use it and the mass of the block to solve for the final speed (in m/s).

m/s

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 0.400kg0.400kg block is initially at rest on a horizontal surface, and is attached to an...
A 0.400kg0.400kg block is initially at rest on a horizontal surface, and is attached to an initially unstreteched spring with a force constant of 2.00N/m2.00N/m. The coefficient of kinetic friction between the block and the surface is 0.4000.400. A constant force of 2.30N2.30N to the right is applied to the block. (A) Draw a free body diagram showing all forces on the block as it moves to the right. Determine (B) the initial Kinetic Energy of the block:  J, and (C)...
A 0.400kg0.400kg block is initially at rest on a horizontal surface, and is attached to an...
A 0.400kg0.400kg block is initially at rest on a horizontal surface, and is attached to an initially unstreteched spring with a force constant of 2.00N/m2.00N/m. The coefficient of kinetic friction between the block and the surface is 0.4000.400. A constant force of 2.30N2.30N to the right is applied to the block. (A) Draw a free body diagram showing all forces on the block as it moves to the right. Determine (B) the initial Kinetic Energy of the block:  J, and (C)...
A thin block of soft wood with a mass of 0.076 kg rests on a horizontal...
A thin block of soft wood with a mass of 0.076 kg rests on a horizontal frictionless surface. A bullet with a mass of 4.67 g is fired with a speed of 613 m/s at a block of wood and passes completely through it. The speed of the block is 20 m/s immediately after the bullet exits the block. (a) Determine the speed (in m/s) of the bullet as it exits the block. _ m/s (b) Determine if the final...
A thin block of soft wood with a mass of 0.0840 kg rests on a horizontal...
A thin block of soft wood with a mass of 0.0840 kg rests on a horizontal frictionless surface. A bullet with a mass of 4.67 g is fired with a speed of 558 m/s at a block of wood and passes completely through it. The speed of the block is 17.0 m/s immediately after the bullet exits the block. (a) Determine the speed of the bullet as it exits the block. m/s (b) Determine if the final kinetic energy of...
A block of mass m is moving in a circular path on a tabletop. The radius...
A block of mass m is moving in a circular path on a tabletop. The radius of the circle is r and the object's speed is v. What is the initial angular momentum of the system? What is the initial kinetic energy of the system? Suppose the mass was being pulled in circular motion by a string. The string is threaded through a small hole on the top of the table, and a person pulls on the string until it...
A horizontal force of magnitude 32.5 N pushes a block of mass 4.05 kg a distance...
A horizontal force of magnitude 32.5 N pushes a block of mass 4.05 kg a distance of 3.00 m across a floor, where the coefficient of kinetic friction is 0.600. (a) How much work is done by that applied force on the block-floor system? (b) During that displacement, the thermal energy of the block increases by 36.0 J. What is the increase in thermal energy of the floor? (c) What is the increase in the kinetic energy of the block?
A 6.20 kg block is pushed 9.50 m up a smooth 36.0 ∘inclined plane by a...
A 6.20 kg block is pushed 9.50 m up a smooth 36.0 ∘inclined plane by a horizontal force of 70.0 N . If the initial speed of the block is 3.50 m/s up the plane. Calculate the initial kinetic energy of the block. Calculate the work done by the 70.0 N force. Calculate the work done by gravity. Calculate the work done by the normal force. Calculate the final kinetic energy of the block. Please explain
A 3.00 kg block that has a coefficient of kinetic friction of 0.350 and is initially...
A 3.00 kg block that has a coefficient of kinetic friction of 0.350 and is initially moving at a constant velocity of to the right. A 75.0 newton force is then applied to the block, toward the right, at an angle of 200 above the horizontal. Find the following:        a. Free body diagram.          b. The x and y components of the applied force.          c. The frictional force on the block.          d. The acceleration of the block.
A 3.00 kg block that has a coefficient of kinetic friction of 0.350 and is initially...
A 3.00 kg block that has a coefficient of kinetic friction of 0.350 and is initially moving at a constant velocity of to the right. A 75.0 newton force is then applied to the block, toward the right, at an angle of 200 above the horizontal. Find the following: a. Free body diagram. b. The x and y components of the applied force. c. The frictional force on the block. d. The acceleration of the block.
A man is pulling a crate of mass m=50kg using a massless rope. The rope is...
A man is pulling a crate of mass m=50kg using a massless rope. The rope is at an angle of theta=30 degrees with respect to the floor. There is friction between the crate and the floor. The man pulls the rope with an increasing force until the block starts to move (let's call Fa the force he needs to apply to start moving the block). Once the block starts moving, the man then changes his pulling force (increasing or decreasing...