Question

A sculpture is 5.43 m tall and has its CG located 2.36 m above the center...

A sculpture is 5.43 m tall and has its CG located 2.36 m above the center of its base. The base is a square with a side of 1.71 m. To what angle Θ can the sculpture be tipped before it falls over?

Θ = _______ degrees

Homework Answers

Answer #1

The sculpture topples when the vertical line through the center of gravity falls just outside the side of the base.

Draw a vertical line through the C.G. just touching the side line of the base in the tilted position of the sculpture. This line makes an angle of θ with the line passing through the center of the sculpture. The right angled triangle formed has adjacent side 1.6 m and opposite side 5.2 m .

tan θ = half the base / h = (1.71/2) / 2.36 = 0.3623

θ = 19.91 deg.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A rock is thrown at a window that is located 18.0 m above the ground. The...
A rock is thrown at a window that is located 18.0 m above the ground. The rock is thrown at an angle of 40.0° above horizontal. The rock is thrown from a height of 2.00 m above the ground with a speed of 30.0 m/s and experiences no appreciable air resistance. The rock strikes the window on its upward trajectory. a) How long is the rock in the air before striking the window? b) What is the magnitude and direction...
4. A ladder 5 m long has a mass of 18 kg and its center of...
4. A ladder 5 m long has a mass of 18 kg and its center of gravity is 2.5 m from the bottom. The ladder is placed against a vertical wall so that it makes an angle of 60° with the ground. How far up the ladder can a 70 kg man climb before the ladder is on the verge of slipping? The angle of friction at all contact surfaces is 16°.
A uniform thin rod of length 0.56 m and mass 3.2 kg can rotate in a...
A uniform thin rod of length 0.56 m and mass 3.2 kg can rotate in a horizontal plane about a vertical axis through its center. The rod is at rest when a 3.5 g bullet traveling in the rotation plane is fired into one end of the rod. As viewed from above, the bullet's path makes angle θ = 60° with the rod. If the bullet lodges in the rod and the angular velocity of the rod is 12.0 rad/s...
1. An ideal pendulum has all of its mass m concentrated at the end of a...
1. An ideal pendulum has all of its mass m concentrated at the end of a massless string of length L, as shown in the figure. The mass is pulled to a slight angle to the left and released from rest, and it takes exactly 1/8 th of a second to arrive at its maximum position at an equal angle on the right side of equilibrium. What is the frequency f of this motion? 2. An otherwise Earth-like planet is...
QUESTION 1. A ferris wheel has a radius of 12 m. The center of the ferris...
QUESTION 1. A ferris wheel has a radius of 12 m. The center of the ferris wheel is 14 m above the ground. When it is rotating at full speed the ferris wheel takes 10 s to make a full turn. We can track one seat on the ferris wheel. Let’s define t = 0 to be a time when that seat is at the top of the ferris wheel while the ferris wheel is rotating at full speed. (a)...
A child pushes her friend (m = 25 kg) located at a radius r = 1.5...
A child pushes her friend (m = 25 kg) located at a radius r = 1.5 m on a merry-go-round (rmgr = 2.0 m, Imgr = 1000 kg*m2) with a constant force F = 90 N applied tangentially to the edge of the merry-go-round (i.e., the force is perpendicular to the radius). The merry-go-round resists spinning with a frictional force of f = 10 N acting at a radius of 1 m and a frictional torque τ = 15 N*m...
Step 1: Before the collision, the total momentum is pbefore = mv0 + 0 where m...
Step 1: Before the collision, the total momentum is pbefore = mv0 + 0 where m is the ball’s mass and v0 is the ball’s speed. The pendulum is not moving so its contribution to the total momentum is zero. After the collision, the total momentum is pafter = (m + M) V, where m is the ball’s mass, M is the pendulum mass, and V is the velocity of the pendulum with the ball stuck inside (see the picture...
1. A car traveling 69 km/h is 247 m behind a truck traveling 93 km/h. How...
1. A car traveling 69 km/h is 247 m behind a truck traveling 93 km/h. How long will it take the car to reach the track? Calculate to one decimal 2.Suppose one of Napoleon cannons has a muzzle speed of 32m/s. It was aimed at 54 ◦ angle. What height can the cannon ball reach? Use g = 9.8 m/s2 Calculate to one decimal 3.A girl throws a rock horizontally, with a velocity of 13 m/s, from a bridge. It...
Potter's Wheel Game A scupltor is playing absent-mindedly with a large cylindrical lump of clay on...
Potter's Wheel Game A scupltor is playing absent-mindedly with a large cylindrical lump of clay on a potter's wheel. This particular wheel has wonderful balance and will turn without friction when taken out of gear. The lump of clay is a uniform cylinder of mass 33.0 kg and radius 17.0 cm ; the axis of the clay cylinder coincides with the axis of the wheel, and the rotational inertia of the wheel can be neglected in comparison with the rotational...
ch 6 1: It is generally a good idea to gain an understanding of the "size"...
ch 6 1: It is generally a good idea to gain an understanding of the "size" of units. Consider the objects and calculate the kinetic energy of each one. A ladybug weighing 37.3 mg flies by your head at 3.83 km/h . ×10 J A 7.15 kg bowling ball slides (not rolls) down an alley at 17.5 km/h . J A car weighing 1260 kg moves at a speed of 49.5 km/h. 5: The graph shows the ?-directed force ??...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT