Question

A 6.9 kg block with a speed of 3.6 m/s collides with a 13.8 kg block...

A 6.9 kg block with a speed of 3.6 m/s collides with a 13.8 kg block that has a speed of 2.4 m/s in the same direction. After the collision, the 13.8 kg block is observed to be traveling in the original direction with a speed of 3.0 m/s. (a) What is the velocity of the 6.9 kg block immediately after the collision? (b) By how much does the total kinetic energy of the system of two blocks change because of the collision? (c) Suppose, instead, that the 13.8 kg block ends up with a speed of 4.8 m/s. What then is the change in the total kinetic energy

Homework Answers

Answer #1

m1= 6.9 kg. m2= 13.8 kg

V1i= 3.6 m/s

V2i= 2.4 m/s. V2f= 3 m/s

a) According to the conservation of linear momentum,

(m1V1+m2V2)I=(m1V1+m2V2)f

1 and 2 are block 1 and block 2

V1f= (m1V1+m2V2)i-(m2V2)f/m1

=(6.9×3.6+13.8×2.4)-(13.8×3)/6.9

= 2.4 m/s

b) ∆K.E=(1/2 m1V1^2+1/2m2V2^2)f-.

( 1/2m1V1^2+1/2m2V2^2)i

∆K.E= (1/2×6.9×[3.6]^2+1/2×13.8×[2.4]^2)-(1/2×6.9×[3.6]^2+1/2×13.8×[2.4]^2

∆K.E=-2.484 J

c) V1f=(m1V1+m2V2)i- (m2V2)f/m1

=(6.9×3.6+13.8×2.4)-(13.8×4.8)/6.9

= -1.2 m/s

∆K.E=[ 1/2×6.9×(-1.2)^2+1/2×13.8×(4.8)^2]-[1/2×6.9×(3.6)^2+1/2×13.8×(2.4)^2]=69.552 J

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 7.0 kg block with a speed of 3.0 m/s collides with a 14.0 kg block...
A 7.0 kg block with a speed of 3.0 m/s collides with a 14.0 kg block that has a speed of 2.0 m/s in the same direction. After the collision, the 14.0 kg block is observed to be traveling in the original direction with a speed of 2.5 m/s. (a) What is the velocity of the 7.0 kg block immediately after the collision? (b) By how much does the total kinetic energy of the system of two blocks change because...
A 2.0 kg block with a speed of 5.1 m/s collides with a 4.0 kg block...
A 2.0 kg block with a speed of 5.1 m/s collides with a 4.0 kg block that has a speed of 3.4 m/s in the same direction. After the collision, the 4.0 kg block is observed to be traveling in the original direction with a speed of 4.3 m/s. (a) What is the velocity of the 2.0 kg block immediately after the collision? (b) By how much does the total kinetic energy of the system of two blocks change because...
A 5.0 kg block with a speed of 3.0 m/s collides with a 10 kg block...
A 5.0 kg block with a speed of 3.0 m/s collides with a 10 kg block that has a speed of 2.2 m/s in the same direction. After the collision, the 10 kg block is observed to be traveling in the original direction with a speed of 2.7 m/s. (b) By how much does the total kinetic energy of the system of two blocks change because of the collision? ________ J (c) Suppose, instead, that the 10 kg block ends...
A 5 kg block with a speed of 3.0 m/s collides with a 10 kg block...
A 5 kg block with a speed of 3.0 m/s collides with a 10 kg block that has a speed of 2.0 m/s in the same direction. After the collision, the 10 kg block travels in the original direction with a speed of 2.5 m/s. (a) Draw (i) a before/after sketch, (ii) momentum & energy bar diagrams of the situation, and (iii) identify the collision as elastic, inelastic and completely inelastic. (b) what is the velocity of the 5.0 kg...
2.00-kg block A traveling east at 20.0 m/s collides with 3.00-kg block B traveling west at...
2.00-kg block A traveling east at 20.0 m/s collides with 3.00-kg block B traveling west at 10.0 m/s. After the collision, block A has a velocity of 5.00 m/s due west. (a) How much kinetic energy was lost during the collision? (b) If the blocks were in contact for 75 ms, determine the magnitude and direction of average force exerted on block A.
A 6.0-kg block moving at 9.0 m/s to the right collides head-on with another 12.0-kg block...
A 6.0-kg block moving at 9.0 m/s to the right collides head-on with another 12.0-kg block moving at 3.0 m/s to the left. What are the velocities of the two blocks after the collision if the collision is elastic?
A 4.34-kg toy car with a speed of 4.13 m/s collides with a stationary 1.00-kg car....
A 4.34-kg toy car with a speed of 4.13 m/s collides with a stationary 1.00-kg car. After the collision, the cars are locked together with a speed of 3.6 m/s. How much kinetic energy is lost in this collision?
A 2.2 kg block moving at 3.5 m/s collides and sticks with a stationary block of...
A 2.2 kg block moving at 3.5 m/s collides and sticks with a stationary block of mass 4.5 kg. What is their combined speed immediately after the collision?
A 2.3-kg object traveling at 6.1 m/s collides head-on with a 3.5-kg object traveling in the...
A 2.3-kg object traveling at 6.1 m/s collides head-on with a 3.5-kg object traveling in the opposite direction at 4.8 m/s. If the collision is perfectly elastic, what is the final speed of the 2.3-kg object?
A 900 kg car moving East with speed of 20 m/s collides with a 1500 kg...
A 900 kg car moving East with speed of 20 m/s collides with a 1500 kg car moving North with speed of 15 m/s at an intersection. Both cars stick together after collision. What is the speed and direction of these two stuck cars immediately after this collision?