A positron with kinetic energy 1.60 keV is projected into a uniform magnetic field of magnitude 0.140 T, with its velocity vector making an angle of 83.0° with the field. Find (a) the period, (b) the pitch p, and (c) the radius r of its helical path.
1ev = 1.6*10^-19 J
mass of positron = 9.11*10^-31 kg
kinetic enenrgy K = (1/2)*m*v^2 = 1.6*10^3*1.6*10^-19
J
(1/2)*9.11*10^-31*v^2 = 1.6*10^3*1.6*10^-19
speed of positron v = 2.37*10^7 m/s
Fnet = m*a
Fnet = magnetic force = q*v*B*sintheta
acceleration a = (v*sintheta)^2/r
q*v*B*sintheta = m*(v*sintheta)^2/r
radisu r = m*v*sintheta/(q*B)
time period T = 2*pi*r/(v*sintheta)
T = 2*pi*m/(q*B)
T = 2*pi*9.11*10^-31/(1.6*10^-19*0.14)
T = 2.56*10^-10 s <<<-----------answer
============================
part(b)
pitch p = vh*T = v*costheta*T
p = 2.37*10^7*cos83*2.56*10^-10 = = 7.4*10^-4 m = 0.74 mm
<<<---answer
=======================
part(c)
radius r = m*v*sintheta/(q*B)
r = 9.11*10^-31*2.37*10^7*sin83/(1.6*10^-19*0.14)
r = 9.6*10^-4 m
Get Answers For Free
Most questions answered within 1 hours.